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Abstract
Live virtual machine migration is a technique often used to mi-
grate an entire OS with running applications in a non-disruptive
fashion. Prior works concerned with one-to-one live migration with
many techniques have been proposed such as pre-copy, post-copy
and log/replay. In contrast, we propose VMScatter, a one-to-many
migration method to migrate virtual machines from one to many
other hosts simultaneously. First, by merging the identical pages
within or across virtual machines, VMScatter multicasts only a s-
ingle copy of these pages to associated target hosts for avoiding re-
dundant transmission. This is impactful practically when the same
OS and similar applications running in the virtual machines where
there are plenty of identical pages. Second, we introduce a novel
grouping algorithm to decide the placement of virtual machines,
distinguished from the previous schedule algorithms which focus
on the workload for load balance or power saving, we also focus on
network traffic, which is a critical metric in data-intensive data cen-
ters. Third, we schedule the multicast sequence of packets to reduce
the network overhead introduced by joining or quitting the multi-
cast groups of target hosts. Compared to traditional live migration
technique in QEMU/KVM, VMScatter reduces 74.2% of the total
transferred data, 69.1% of the total migration time and achieves the
network traffic reduction from 50.1% to 70.3%.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design

General Terms Design, Experimentation, Performance

Keywords Live Migration, Virtualization, De-duplication, Multi-
cast, Placement

1. Introduction
Live migration is a key point of the current virtualization tech-
nologies; it allows the administrator to migrate one virtual machine
(VM) from one host to another without dropped network connec-
tion or perceived downtime. Live migration offers a flexible and
powerful fashion to balance system load, save power and tolerant
fault [19] in data centers. VMware proposes vMotion [25], a live
migration technology that leverages the complete virtualization of
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servers, storage, and networking to move an entire running VM in-
stantaneously. Xen proposes XenMotion [10], a similar technology
to vMotion but implemented on Xen platform. Other virtualized
technologies such as KVM, Hyper-V, VirtualBox also provide the
live migration. Although the implementation details are differen-
t owing to heteromorphic virtualization technologies, the state of
a VM reserved during live migration is analogous, involving CPU
state, network state, memory state and disk state.

The existing live migration schemes focus on migrating VMs
from one host to another (one-to-one). The methods, such as pre-
copy [10], post-copy [27], memory compression [15], trace and re-
play [19] and live gang migration [11] have been proposed with the
chief concern on reducing the amount of transferred memory data
during live migration. It is remarkable that in practical scenarios
such as online maintenance, power saving or fault tolerance, mi-
grating multiple VMs to one host will overload the target host, and
eventually crashing it. Therefore, a live migration technology that
migrates VMs to many target hosts (one-to-many) is urgent.

We consider two important issues on one-to-many migration:
live migration technology and placement of VMs. There has been
many works [6, 23, 24, 29] sharing a similar philosophy but there
still exists some unsolved issues which should be considered fur-
ther. Firstly, no optimization has been proposed on live one-to-
many migration technology. Prior works simply leverage the tra-
ditional ways to carry out migration; as discussed previously, these
techniques are only concerned with one-to-one migration. Second-
ly, the de-duplication technology [11] may reduce the transferred
data by merging identical pages that target one host, but it is un-
able to merge identical pages that target two or more hosts. Third-
ly, the placement of VMs is derived from the scheduling algorithm
that focus on the workload for the purpose of power saving [23],
load balance [29] and SLA requirements [6]. However, considering
network traffic, which is practically critical in today’s data center-
s where a large scale of data exist for processing and transferring,
frequent live migration caused by load balance or power saving will
introduce additional heavy network traffic.

Note that in works [11, 14] where state there are plenty of i-
dentical pages across VMs, multicast may be a natural approach to
transfer identical pages of VMs to associated hosts. In this paper,
we propose a multicast based approach named VMScatter to imple-
ment live one-to-many migration. VMScatter employs multicast to
deliver identical pages to a group of destinations simultaneously
in a single transmission from the source host. This avoids transfer-
ring each page individually, thus it not only reduces the transferred
data but also reduces the network traffic. During migration, others
including the unique pages and dirtied pages will be unicasted to
associated target hosts. Figure 1 presents the overview of one-to-
many migration approach for migrating two VMs, each of which
targets a respective host. The multicast-based live migration will
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Figure 1. Overview of the live migration in VMScatter(Two pages
with the same content 1 in VM1 and VM2 will be multicasted to
Host1 and Host2 instead of individual transfer. Pages 2 and 4 that
are unique will be unicasted to the associated host).

be valuable especially for the VMs having the same OS and appli-
cations, where result in plenty of identical pages.

Besides, two successive packets to be multicasted may target d-
ifferent hosts, thus some target hosts must join the multicast group
for receiving expected packets while some quit to avoid receiving
unneeded packets. This will introduce excessive network overhead
owing to frequent socket related operations. We reduced this prob-
lem to be the Hamilton Cycle problem which is NP-complete, and
leverage the existing algorithm to schedule an optimal permutation
of packets for minimizing the overhead between multicast groups’
switchovers.

Moreover, the network traffic of different placements are var-
ied owing to the intricate association among pages, VMs and target
hosts. To achieve better behavior, we introduce a grouping algo-
rithm to specify the placement of VMs, with the aim of minimiz-
ing the network traffic while meeting the workload requirements
meanwhile. We analyze the grouping impact on network traffic by
a case study, give the problem formulation which is proved to be a
bin-packing problem, and then present a greedy algorithm to find a
preferable placement.

We implement VMScatter in QEMU/KVM, with User Data-
gram Protocol (UDP) to multicast the identical pages and Trans-
mission Control Protocol (TCP) to unicast other pages. We de-
sign the protocol to guarantee consistency and integrity of the run-
ning state between the source and target hosts. Further, we imple-
ment various optimizations such as selective hashing for compar-
ing pages, on-demand retransfer for transferring lost pages as well
as compression and multithreading when sending packets. As we
will see, the experiments conducted in a private data center un-
der various workloads confirm the feasibility and efficiency of our
multicast-based live one-to-many migration schema.

The remainder of this paper is organized as follows. Section I-
I introduces the overview of live migration method via multicast,
describes the phases of VMScatter, and proposes the greedy algo-
rithm for finding a placement. Section III describes detailed imple-
mentation issues. Section IV presents the conducted experiments
to evaluate the proposal. Section V surveys the related work to live
migration, de-duplication, dynamic placement and multicast. Sec-
tion VI concludes the paper and describes our future work.

2. Design of Live One-to-Many Migration
In this section, we present the overview of the VMScatter along
with some design building blocks.

2.1 Design Objectives

The live migration process must be transparent to the operating
system and applications running on top of VMs, and the overhead
on the source host and network must be considered. We do not
address the issue of migrating disk state within this paper, yet we
suggest that as part of our future work.

(a) ISVST

(b) IMVST

(c) IMVMT

Figure 2. Three situations of identical pages transfer.

Total migration time: The time duration from the preparation at
the source host to the end of the last VM’s migration at the target
host.

Total transferred data: The amount of data send from the source
host to the target hosts to synchronize the VMs’ state.

Network traffic: The network traffic is network topology-
specific actually; within the paper we refer this metric to the total
amount of data received by all target hosts.

Performance degradation: The influence on the performance of
the applications running in the migrating VMs.

2.2 Situations for Pages Transfer

The unique pages should be unicasted, yet for identical pages, the
situation is much more complicated due to the association among
pages, VMs and target hosts: the identical pages may be self-
identical which means existing in only one VM or inter-identical
implying across many VMs, and the VMs may target one or more
hosts. Figure 2 demonstrates three situations for identical pages
transfer and the details are described as follows:

ISVST (Identical pages, Single VM Single Target): The identical
pages exist in only one VM (self-identical); in this situation shown
in Figure 2(a), transferring only one copy of identical pages to
the target host is sufficient. Apparently, this reduces both total
transferred data and network traffic.

IMVST (Identical pages, Multiple VMs Single Target): The
identical pages exist across multiple VMs (inter-identical), and
these VMs are migrated to one target host. This is similar to ISVST
where only one copy of the identical pages is required to be trans-
ferred. This situation illustrated in Figure 2(b), also reduces both
the transferred data and network traffic.

IMVMT (Identical pages, Multiple VMs Multiple Targets): The
identical pages exist across multiple VMs (inter-identical), and
these VMs are migrated to different target hosts. In this scene,
the multicast mechanism is carried out to transfer a single copy of
these identical pages to the multicast group where associated target
hosts join to receive expected pages. Figure 2(c) illustrates such a
case where VM1 and VM3 are placed to Host1 while VM2 targets
Host2. This reduces the total transferred data from two aspects: one
is the inter-identical pages that target the single host which is the
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Figure 3. Three stages of page transfer.

same to IMVST, while another comes from multicasting the pages
that target different target hosts. The network traffic reduction is
due to the first aspect.

Since the identical pages will be transferred by single copy, the
packet transferred via whether unicast or multicast must comprise
three fields for referencing one page. The first is the VM Id, which
tells the target host that which VM the page belongs to, and it can
be the process id of VM, the MAC address or other unique marks.
The second is the Guest Physical Address (GPA) of the page, which
determines the memory position the page should be filled in. The
last is the Page Content, which records the whole content of the
page. The VM Id and GPA can be considered as a pair to reference
one page exclusively. One packet would contain multiple VM Id
and GPA pairs for the identical pages and a single copy of their
Page Content.

2.3 Phases of Live One-to-Many Migration

VMScatter takes the similar approach to pre-copy[10], but the
preparation phase contains collect stage and schedule stage, and
page transfer phase consists of three stages: multicast, on-demand
retransfer and unicast.

Preparation: The collect stage in preparation calculates the
hash value of each page to distinguish pages having different con-
tent, and employs complete comparison to identify the identical
pages. On the basis of these identical pages and their associated
VMs, the schedule stage finds a preferable placement of VMs and
specifies a permutation of packets to be multicasted.

Data transfer: The UDP transfers data without establishing
a connection and consumes less resource, hence is suitable for
multicast. Yet it is unreliable and can not guarantee successful
transmission, and even results in the failure of running VM due
to lost pages. As a result, TCP will be adopted as a supplementary
of page transfer in a reliable manner.

As described in Figure 3, VMScatter transfers the identical
pages first. For the IMVMT pages that target two or more target
hosts, VMScatter packages them and multicasts the packets to
associated targets via UDP. Because one lost packet may imply
hundreds of lost pages(the packet loss rate is 0.3% in our private
data center, and the same result can be seen in several work [8, 22]),
which will bring the retransmission load for unicast, therefore we
re-multicast the lost packets on-demand by the target host, which
shares a similar philosophy to the post-copy method [27]. The
packets in on-demand retransfer may be lost again, but the amount
will be quite a few; for simplicity and robustness it is better to
treat the twice lost pages as unique pages. These twice lost packets,
with the unique pages among VMs, identical pages in ISVST and
IMVST, and the dirtied pages during migration are unicasted to
associated target host via reliable TCP.

2.4 Grouping Decision

Another key challenge in one-to-many migration is the placement
of VMs, namely a grouping that describe the association between
VMs and targets. In this section, we first illustrate the impact on
network traffic of different groupings by a case study, then present
the problem formulation which is proved to be an NP problem, and
lastly propose a greedy algorithm to find a preferable grouping.

2.4.1 Grouping Impact Analysis

The grouping has few effects on the total transferred data, accord-
ing to the three stages of page transfer: 1) The unique pages un-
doubtedly are unique regardless of the grouping, thus the amount is
constant. 2) The identical pages whether multicast or unicast will
be transferred by only one copy, thus the amount of transferred data
is also constant. 3) The time cost is fixed in theory for transferring
a constant amount of unique and identical pages, thus results in a
constant amount of dirtied pages during live migration.

However for network traffic, different groupings result in sig-
nificantly differences. This is because the network traffic reduc-
tion is mainly from the de-duplication of ISVST and IMVST pages
that target the same host, and pages that should be transferred to
the target is determined by the placement. For example, we as-
sume the VM state is frozen and consider the state to be a set of
pages; the assumption is reasonable because most pages would s-
tay unchanged during live migration that last dozens of seconds.
We suppose four VMs will be placed to two target hosts H1 and
H2, the four VMs with their memory pages are: V1 = {A,B,C},
V2 = {A,B,D}, V3 = {C,D, F}, V4 = {A,C,E}. For one
grouping in which V1 and V2 are placed on H1, V3 and V4 target
H2, the memory pages transferred to H1 are {A,B,C,D}, and
are {A,C,D,E, F} for H2, the network traffic in this grouping is
9 pages. For another grouping that V1 and V3 target H1 while V2

and V4 target H2, the pages transferred to H1 are {A,B,C,D, F}
and H2 are {A,B,C,D,E}, this case generates 10 pages, which
is one more page than the previous grouping. One thing to be noted
is that the total transferred data of the two groupings are the same,
i.e. {A,B,C,D,E, F}.

2.4.2 Problem Formulation

We consider a scenario where there are n VMs and m candidate
target hosts, and we assume the VMs are frozen thus the memory
pages in one VM are constant. We define the capacity of target
host Hj is Cj , which refers to the maximum number of VMs that
Hj can accept owing to the limited resource such as memory or
workload specific factors. Each VM can be regarded as a set of
memory pages and is denoted by Vi for VM i. We refer Sj to the set
of VMs that are accepted by the target host Hj . The identical pages
of VMs in Sj will be kept only one copy, therefore the network
traffic related to target Hj can be regarded as the length of the
union of memory pages owned by VMs in set Sj , we take Lj to
denote the network traffic of the set Sj .

Problem definition. Given n VMs with their associated mem-
ory pages V , and m candidate target hosts with capacity C, we
need to find a grouping that divides the n VMs to k target hosts
{S1, S2, ..., Sk}, while minimizing the total network traffic L for
these k target hosts.

L =
k∑

j=1

Lj =
k∑

j=1

|Sj | =
k∑

j=1

|
Cj⋃

i=1

Vi|

This problem can be reduced from the bin-packing problem
[20], and is proved to be NP-hard.
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2.4.3 Greedy Algorithm

Because the global optimal solution is hardly acquired for NP-hard
problem, we give the greedy algorithm for obtaining a preferable
solution. Consider the purpose of grouping is placing the VMs to
multiple target hosts, so the first key issue is to decide which target
host should be selected prior. Note that the reduced network traffic
is mainly from the de-duplication for ISVST and IMVST identical
pages that target the same host (i.e., in one set Sj); intuitively, the
network traffic may decrease greater if more VMs target one host in
which more pages will become identical. So our greedy algorithm
first fills the target host which has the maximum capacity, then fills
the host with second largest capacity, and repeat until all the n VMs
are filled into the targets. Moreover, this approximately minimizes
the number of target hosts correspondingly.

Another key of the greedy algorithm is which VM should be
selected prior to others. It is observed that for the set Sj with fixed
number of VMs, the larger number of identical pages, the smaller
length of the union of the set. Hence, we calculate the count of
identical pages of every two VMs, and fill the target host with the
VM which has the largest count. We use Ni,j to denote the count
between Vi and Vj , and define a Vi relates to a set if 1) the Vi has
not been existed in any set, 2) there exits a Vj in the set, 3) the value
of Ni,j is nonzero. The VMs that relate to the set are candidates
that can be added to the set. Similarly, we fill the set with the VM
which has the largest Ni,j among the candidates relate to the set.

The algorithm is described as follows: Firstly we select a target
host with the maximum capacity, then we choose the two VMs
which have the largest count in N , and place them into the host.
Based on the two VMs, we select the VM that not only relates to
the host but also has the largest Ni,j among the rest N . This step
will repeat until the capacity of this target host is reached. And the
same procedure will be applied to other target hosts which have
maximum capacity among the remaining hosts until all the n VMs
are filled, thereafter we get the grouping. The algorithm 1 describes
the procedure and some details are removed for clarity.

Algorithm 1 Greedy Algorithm

Require: V = {V1, V2, ..., Vn}; S = {S1, S2, ..., Sm}; C =
{C1, C2, ..., Cm};

1: Sort the hosts S in descending order by the capacity C;
2: Calculate Np,q between each two VMs Vp and Vq;
3: N ← {N1,2, ..., N1,n, N2,3, ..., Np,q , ..., Nn−1,n};
4: Sort N in descending order;
5: j = 0;
6: for i from 1 to n do
7: Sj ← {};
8: while Cj �= 0 do
9: if Sj = {} then

10: Get the maximum Np,q ;
11: Sj ← Sj ∪ {Vp} ∪ {Vq};
12: i← i+ 2, Cj ← Cj − 2;
13: else
14: Get the maximum Np,q related to Sj ;
15: if Vp ∈ Sj then
16: Sj ← Sj ∪ {Vq};
17: else
18: Sj ← Sj ∪ {Vp};
19: end if
20: i← i+ 1, Cj ← Cj − 1;
21: end if
22: end while
23: Seek to the next host by j ← j + 1;
24: end for

Figure 4. VMScatter architecture.

3. Implementation Issues
This section presents the implementation issues that we have made
in VMScatter approach. We start by describing the overall architec-
ture, then go on sub-level description of details and optimizations.

3.1 Architecture

We leverage the existing live migration mechanism in QEMU/KVM
[16], and implement VMScatter using Linux 2.6.32 and qemu-
kvm-0.12.5. We modify the QEMU code for support multicast in
user mode, and implement a kernel module Collector to collect and
organize the identical pages.

The VM, which is actually a process, uses a system call madvise
to advise the Collector to handle the pages in the virtual memory
address range, which represents the physical memory from the view
of VM. Since the mapping from physical address of VM to virtual
address of physical host is easily acquired, Collector only transfers
the metadata including Page Address and VM Id of identical pages
from kernel to QEMU via ioctl, and the Migration Sender accesses
the page content in user space. According to the greedy algorithm,
the Scheduler figures out a preferable grouping which determine
the placement of VMs, and then the Migration Sender carries out
the page transfer until all Migration Receivers in target hosts obtain
the consistent state of associated VMs with that at the source host.
Figure 4 illustrates the overall system architecture.

3.2 Collector Module and Selective Hash

We combine hash table and red-black tree to organize the identical
pages in kernel: the pages in one hash bucket will be organized as
a red-black tree, and the tree node represents a cluster of pages that
have the same hash value. We adopt 32 bits hash value, the leftmost
20 bits are used to index the bucket in the hash table containing
1M (220) buckets, and the rightmost 12 bits are used to distinguish
4096 (212) tree nodes in each bucket. Therefore each node refers
to unique hash value among all nodes in the hash table. For each
page, we first calculate the hash value, then insert the page into
the bucket indexed by the leftmost 20 bits of page hash value, and
then organize the page into the red-black tree node indexed by the
rightmost 12 bits of page hash value. Since hash collision may
occur, resulting in the pages having the same hash value are still
varied, the byte-by-byte content comparison of new inserted page
to the pages have already in the node is carried out. Therefore, the
different pages in the same tree node, which are hash value identical
but have different content, will be distinguished.

Hashing the memory pages introduce time overhead, even the
SuperFastHash [2] cost over 30s for twelve VMs with 1G memory
in 2-way quad-core Xeon E6750 2GHz processors. To speedup
the calculation, we just select disperse 200 bytes instead of the
whole 4096 bytes to obtain the hash value of the page. Against
the SuperFashHash method, the selective hash calculation for 12G
memory can reduce the time cost from 37.3s to 1.8s, and the
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number of hash collisions increase from about 100 to only 1000,
minor compared to millions of pages.

3.3 Page Classification: Identical or Unique

Some identical pages may be short-lived due to the dirtied content
during the live migration, causing the page that is unique to become
identical later and vice versa. Figure 5 shows such a case in which
the identical page in collect stage turns to be unique during page
transfer then becomes identical when the migration is over after
cycles of updates. One common approach is dynamic tracking:
by setting the pages to be write-protect, we can track the content
change of each page, and reorganize the dirtied page in the hash
table, then decide whether the page is identical or not in real-time.
Afterwards we notify the Migration Sender to multicast or unicast
the page correspondingly when transferring.

However in our implementation, we consider the pages to be
identical or unique according to the memory state when collect
stage finishes, without dynamic tracking during later migration.
This is due to three reasons: 1) The write-protect skill will cause
page fault for each memory write operation, which introduces a
heavy burden for memory-intensive applications, hence seriously
decrease the performance of VM; 2) Some part of memory pages
may be dirtied frequently in a certain time, resulting in lots of
notifications. Most notifications will be useless because the new
arriving notification may cover the older one ahead of transfer;
3) The experimental result says that majority of identical pages
will keep content constant and identical during dozens of seconds
running, and these long-lived pages suggest us adopting the page
type in one certain epoch is feasible and simple, with bringing
about minor unnecessary multicast pages.

3.4 Successful Page Transfer

To guarantee the successful migration of VMs, VMScatter should
fall in two ways of what is needed: integrity and consistency of
transferred pages.

Integrity: Integrity means that we should construct a complete
memory space for each VM at the target host. The lost packets ow-
ing to unreliable UDP may cause plenty of missing pages, leading
to system runtime error or even crash. We keep the integrity via the
on-demand retransfer and reliable unicast. Each target host main-
tains an array recording Packet Id which is associated with packet
for indexing the lost ones, and then requests the lost packets from
the source host by Packet Id. After receiving the request, the source
host will re-multicast the packets to all associated targets. The uni-
cast stage will employ reliable TCP to retransfer the pages lost in
on-demand retransfer. Thus with the combination of UDP and reli-
able TCP, we achieve transferring the pages in an integral mode.

Consistency: Consistency of memory pages between the source
and target hosts preserves the newest state for VMs after migration;
the main cause of inconsistency is the new dirtied memory pages
during migration. We leverage the method proposed by Clark et
al. [10], use bitmap to index the dirtied pages during transfer,
transfer the dirtied pages iteratively until the amount of dirtied
pages converges to below the threshold, then we stop the VM,
transfer the left pages via TCP, and lastly boot the VM at the target.

3.5 Join and Quit the Multicast Group

The multicast group reflects a group of target hosts intended to re-
ceive the packet. A target host must join the multicast group to
receive the expected packet, and quit to avoid receiving unneeded
packets for reducing both the network traffic and overhead. Since
each packet is related to one certain multicast group which con-
sists of hosts targeted by the packet, the various packets may be
transferred to different multicast groups, therefore cause the tar-

Figure 5. Page type change during migration.

get hosts to join and quit the multicast group frequently. Thus the
network overhead rise heavily for thousands of multicast groups’
switchovers for various packets. To avoid this unfortunate behav-
ior, we need to specify a permutation of packets.

Note that the multicast group can remain unchanged for pack-
ets targeting the same hosts. In addition, the number of multicast
groups is far fewer than the amount of packets, because there ex-
ists at most 2k − 1 − k combinations for k target hosts (k is not
more than the number of VMs) but has millions of packets, imply-
ing many packets target the same multicast group. The two reasons
encourage us to firstly group the packets that have the same multi-
cast group, and then design a sequence of these various multicas-
t groups to minimize the overhead between the multicast groups’
switchovers. And this sequence represents the permutation of pack-
ets.

We consider n multicast groups, and refer Gi to one multicast
group i. Providing the cost for one target joining or quitting the
group are equal and constant, says c; and Wi,j denotes the overhead
of switchover from Gi to Gj , thus Wi,j is the product of the count
of target hosts’ joining and quitting in the switchover and the cost
c. For example, Gi contains a set of hosts {H1,H3,H4} while
Gj contains {H2,H3}; in the switchover from Gi to Gj , H1 and
H4 will quit the multicast group, meanwhile H2 joins in. Thus the
valueWi,j is 3∗c for two quitting and one joining. Our purpose is to
find a permutation of multicast groups with the aim of minimizing
the total overhead W :

W =

n∑

i=0

Wi,i+1 G0 = Gn+1 = {}

This can be reduced to be the classic Minimum Hamiltonian Cy-
cle problem which is NP-complete, we simply adopt the algorithm
proposed by Bollobas et al. [7], which approximates the optimal
value in polynomial time.

The procedure of multicasting the packets to groups would be
simple once the permutation is known. First of all, the Migration
Sender selects the first multicast group in the permutation, notifies
the associated target hosts to join the group, and then multicasts
the packets target this multicast group. After the packets target this
multicast group being send over, the Migration Sender will notify
associated target hosts to join or quit this multicast group to switch
to the next multicast group, and then transfer the packets to the
new multicast group. This procedure will repeat until all packets
are transferred to associated multicast groups.

3.6 Compression and Multithreading

Compression is an efficient approach to reduce the size of trans-
ferred packets; the algorithms such as LZ77 [30], LZW [17] can
bring about as many as 50% or more data saving, which is signifi-
cant in the live migration scene where large amount of data exists.
We take zlib which is an effective compression library to compress
the packets.

However, compression will introduce additional CPU overhead
and cost more migration time. Multithreading is a valuable assisting
technology to parallelize the tasks by overlapping the processing
time of threads and distributing the tasks to multiprocessors, thus
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efficiently reduce the time for CPU intensive and IO intensive
tasks running on multiple processors. In VMScatter, we exploit a
thread pool containing six threads to reduce the thread creation and
destruction overheads. Each thread will independently compose
packets and then compresses the packets via zlib, lastly transfer
the packets to targets during the thorough data transfer phase.

4. Experimental Evaluation
We test VMScatter on serval workloads, and give the detailed e-
valuation in this section. We begin by illustrating the results relat-
ed to page content similarity of VMs acquired by Collector mod-
ule, then compare the metrics including total migration time, to-
tal transferred data and network traffic between the QEMU/KVM
live migration technology and VMScatter schema; furthermore, we
present the results on network traffic of preferable grouping versus
random groupings. Lastly we characterize the impacts on system
performance both in a single VM and VM cluster.

4.1 Experimental Setup

We conduct our experiments on 14 physical servers, each with 2-
way quad-core Xeon E6750 2GHz processors, 16GB DDR mem-
ory, and NetXtreme II BCM5708S Gigabit network interface card.
The shared storage is configured with 1T disk, and connected to
servers via switched Gigabit Ethernet. We configure 1GB memo-
ry for each VM unless specified otherwise; therefore the physical
server can support as many as 16 VMs. The operating system on
both physical and virtual machines is debian6.0, with Linux ker-
nel version 2.6.32. All the servers share the storage so that the disk
state does not need to be migrated. The workloads includes:

Idle workload means the VM does nothing except the tasks of
OS self after boot-up.

Kernel Compilation represents a development workload in-
volves memory used by the page cache. We compile the Linux
2.6.32 kernel along with all modules.

Sysbench [3] is a benchmark tool for evaluating OS parameters.
We perform 5000 transactions on the database table containing 1
million entries.

TPC-W [4] is a transactional benchmark that simulates the
activities of a business web server. We run TPC-W serving 600
simultaneous users accessing the site using the shopping workload
that performs a mix of read/write operations.

4.2 Identical Rate Acquired by Collector

The identical rate, which is defined by the percentage of the i-
dentical pages on all the memory pages, is the key to this pro-
posal because higher identical rate means more pages can be de-
duplicated and multicasted. The identical memory pages come
from five sources: memory of kernel that loaded when booting
up, the content of the loaded application data and code, some li-
brary codes related to the application, and content generated by
application and zero pages. The zero pages will be dirtied after
running a long time, in our experiment, the number of zero pages
decreases from about 200,000 after boot-up to less than 5000 in
one VM which has 262144 pages (1G memory). As a result we
conduct the experiments after long time running to minimize the
impact of zero pages. We illustrate the identical rate of the VMs
with the same OS and applications, and then the identical rate of
different VMs. Our experiment obtain similar results to many work
[14, 21] which state about 50% to 90% of the pages have identical
content with others for VMs having the same OS, providing a high
degree of confidence that the VMScatter would be effective.

Same VMs. The same VMs have the same OS and the same
applications. Figure 6 demonstrates the variation of identical rate
with the increasing number of VMs. The rate is higher than 86%

Figure 6. Identical rate of virtual machines.

Figure 7. Identical rate of different VMs.

among the same VMs for Idle, Kernel Compilation and Sysbench
workloads. Furthermore, we observe that the identical rate rises as
the number of VMs increases, e.g. ranges from 88.03% to 95.3%
with the Kernel Compilation as a test application. The rise is be-
cause the unique page may become identical to another page in the
new added VM. This result is encouraging because more than 86%
memory pages of 11 VMs may be eliminated via multicast, which
will reduce the total transferred data by a lot.

Different VMs. We test two kinds of different VMs: 1) VMs
with the same OS but different applications, in this case, we test on
three VMs with debian6.0, and initiate Kernel Compilation, Sys-
bench, and TPC-W separately in each VM. 2) VMs with different
OS, four VMs are equipped with Debian6.0, Redhat5.3, Windows
XP, and Windows 7, with variety of applications running inside
such as web browser, video player, office, etc.

As we can see from Figure 7, the identical rate between each t-
wo VMs with different applications varies, 47.34% for Kernel com-
pilation and TPC-W workloads, 42.43% for Kernel Compilation
and Sysbench, 57.85% for TPC-W and Sysbench (higher than the
other two pairs because they are transactional benchmarks relat-
ed to MySql), and the identical rate across all the three VMs is
51.84%. This result indicates that about half of the memory pages
are identical for VMs with the same OS, and the reduced identical
pages compared to the same VMs are due to the different applica-
tions and their content. However for different VMs with different
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Figure 8. Comparison of three metrics in different modes, for three target hosts and varied number of VMs.

(a) Total Migration Time (b) Total Transferred Data (c) Network Traffic

Figure 9. Comparison of three metrics in different modes, for increasing number of target hosts and twelve VMs.

OS shown in the third set of bars, the identical rate is much low-
er, only at the average of 21.8% between two VMs. We suspect
the identical pages mainly come from zero pages and universal li-
braries. These results imply VMScatter may still benefit for saving
identical pages in transmission.

The above two results also suggest us that the identical rate
is different in different number of VMs or various type of VMs.
For fair comparison of all modes, we evaluate our method only
on migrating equal numbers of VMs having the same OS and
applications to each target host in the following experiments.

4.3 Live Migration via Multicast

We carry out the evaluation of live migration for the following three
modes.

Off-the-shelf migration: This method is the simple live migra-
tion method used in QEMU/KVM without optimizations except the
compression of the page whose bytes are the same such as zero
page.

VMScatter: This is our live one-to-many migration method in
that the identical pages will be merged into one page in the packet
and multicasted to different hosts.

Compression and multithreading (VMScatter+CM): This mode
extends the VMScatter work, with threads each of which composes,
compresses and then sends the packets.

We first migrate 3, 6, 9, 12 and 15 VMs separately to three target
hosts, then migrate twelve VMs simultaneously while varying the
number of hosts to evaluate the live one-to-many approach on three
metrics: total migration time, total transferred data and network

traffic. The results illustrated are the average of 20 trials with
Kernel Compilation running inside the VMs.

Total migration time. Figure 8(a) and Figure 9(a) compare the
total migration time of the three modes of live migration. It can
be seen that the VMScatter mode gives the lowest total migra-
tion time, migrating the 12 VMs in 32.7 seconds, achieving about
69.1% reduction against the off-the-shelf mode which costs about
105 seconds. This is due to the fact that the pages that have iden-
tical content are transferred by only a single copy with reference
information such as Page Address and VM Id, which reduces large
amount of transferred data and IO overhead. The performance of
VMScatter+CM mode, however, reduces only 25% of migration
time. The reason is straight: packets compression is CPU intensive
so that consumes the additional time compared to VMScatter. Yet
as observed in the graph, this mode still consumes less time than
the off-the-shelf mode due to the benefit of multicast and page de-
duplication.

Total transferred data. Figure 8(b) and Figure 9(b) plot the
total transferred data of the three modes. One small anomaly is in
the off-the-shelf mode where the total transferred data is less than
12G which should be the sum of 1G memory size for 12 VMs.
This is because the compression of zero pages implemented in QE-
MU/KVM, which involves representing one page by only one byte
instead of the 4096 bytes during transmission. As expected, the
VMScatter method transfers far fewer data than off-the-shelf mod-
e, and brings about 74.2% reduction attributable to unimplement-
ed transmission of duplicate pages. Note that total transferred data
and the total migration time show a similar trend which both intro-
duce about 70% reduction, this is due to the limited network band-
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width between the physical hosts. Although the VMScatter+CM
mode consumes more time, it enhances the VMScatter further by
70.6%, and achieves a total of 92.4% reduction over the off-the-
shelf method.

As Figure 8(b) shows, the increase of total transferred data in
VMScatter is not proportional to the number of VMs. This is be-
cause the inter-identical pages are only transferred by multicasting
a single copy, so the identical pages in the new added VM will not
need to be transferred any more except extra page references such
as Page Address and VM Id pairs. The increased amount are mainly
from the unique pages in the added virtual machines as well as the
additional dirtied pages caused by longer migration time.

It should be observed in the Figures 9(a) and 9(b): both the
total migration time and total transferred data remain unchanged
regardless of the number of target hosts. The reasons are explained
as follows. 1) The definitive identical rate of 12 VMs as shown
in Figure 6 implies that the amount of packets is almost fixed for
both identical and unique pages, which further indicates the transfer
time for these two types of packets is definitive in limited network
bandwidth. As a result, the amount of dirtied pages can be regarded
as fixed. In addition, the lost packets increase the transferred data
but only a small number (only about 0.3%). Consequently, the
amount of total transferred data consists of the above three types
of packets and can be considered to be constant. 2) For the total
migration time, the time spent on the preparation phase including
collecting identical pages and scheduling groups is almost constant
for fixed page numbers, therefore the total migration time is in line
with the page transfer time, thus it is also constant.

Network traffic. Although there is no exact method to quantify
network traffic during the live migration, we provide an approxi-
mate measure by the sum of packets received by target hosts. Fig-
ures 8(c) and 9(c) compare the network traffic with the increasing
number of VMs and target hosts respectively. The network traffic
is equal to the total transferred data when the number of targets is
one, this is easily understood by the way we measure the network
traffic. Another result to be observed is that when three (12) VM-
s are migrated to three (12) target hosts as shown in Figure 8(c)
(9(c)), i.e., each target host receives only one VM, the VMScat-
ter method still reduces the network traffic by 17.8% attributable
to the self-identical pages within the VM. For other scenarios, the
network traffic in VMScatter mode decreases significantly with a
range between 50.1% to 70.3%.

Different from Figure 9(b) where the total transferred data are
constant over various number of hosts, the network traffic increases
as the number of target hosts increase as illustrated in Figure 9(c).
This is because one additional copy of the packets needs to be
forwarded by the switcher to the new added target host during
multicast over the network. The VMScatter+CM mode also gain
performance, reducing the multicast traffic further by about 69.7%.

We also evaluate the three metrics under Sysbench and TPC-
W workloads. For the TPC-W which has lower identical rate, the
VMScatter live migration method still performs nicely by reducing
63.3% of the total migration time, 67.4% of the total transferred
data and 55.8% of the network traffic.

Overall, these results confirm the effectiveness of VMScatter.
Although the compression and multithreading method produces
longer total migration time, it reduces numerous transferred data
and network traffic further by about 70% on the basis of VMScatter
mode.

4.4 Downtime

Downtime is another important metric of live migration. It consists
of the time to suspend the VM at the source host, transfer the
dirtied pages, and activate the migrated VM at the target host. The
downtime is inevitable because the dirtied pages generated during

continuous data transfer will lead to the inconsistency of VM state
between the source and target host.

Table 1 shows the comparison in terms of downtime for the
three modes for migrating 12 VMs to three targets evenly. The
variation in the downtime is due to the parallel migration. The
VMScatter mode performs better than the off-the-shelf method, and
this could because this mode generates less dirtied data in a shorter
migration time, thus consumes less time in the final data transfer
after suspending the VM. Consider the VMScatter+CM mode, the
overhead of compression at the source and decompression at the
target cause the minimum value to be larger than the other two
modes, and the average is less than off-the-shelf due to lesser time
to transfer the reduced packet size.

4.5 Grouping Benefit

The two most significant results we have seen so far are in Fig-
ures 8 and 9 where the total transferred data and network traffic are
reduced. We then conduct experiments to evaluate our grouping
method which aims to reduce the network traffic further by decid-
ing a preferable placement.

Figure 9(c) demonstrates the variation of network traffic with
different groupings when the number of target hosts varies. Fur-
thermore, we fix the number of targets and construct a group that
distributes twelve VMs evenly to each target, we distribute even-
ly for fair comparison since the difference in number may result
in volatile identical rate which affects the results. For each fixed
number of targets, we simulate 60 different groupings, migrate the
12 VMs to the associated target hosts decided by each grouping
and then count the network traffic. Besides, we obtain the prefer-
able grouping by the greedy algorithm. We set the capacity of target
hosts as identical, which means the hosts will accept the same num-
ber of VMs.

Intuitively, there is only one grouping method when there is
one host, where all the VMs would target one host; the same
is true for 12 targets where each VM targets a respective host.
Thus, the two scenarios are not our concern. Table 2 illustrates the
results of the network traffic on different groupings under various
workloads, including the maximum value, minimum value and
average value of the network traffic on 60 groupings; along with
the network traffic of our preferable grouping. As the table shows,
the maximum traffic is 4.07G while the minimum value is 3.47G
for targeting three hosts when Kernel Compilation running inside
the VMs, and the difference between the two groupings is about
17.3%. Our preferable placement of VMs decreases the network
traffic to 3.31G, a 13.4% reduction compared to the average value.
Generally, the preferable grouping achieves 10% to 15% reduction
of the network traffic against the average of random groupings,
thus it proves the improvement of grouping algorithm. The 10%
to 15% reduction of network traffic is particularly valuable in the
data-intensive data centers.

4.6 Performance Impact

In this section, we quantify the side effects of migration on a
couple of sample applications. We evaluate the performance impact
on both single VM and VM cluster with migrating 12 VMs to

Modes Max Min Avg.

Off-the-shelf 2351 192 1518
VMScatter 1573 184 863
VMScatter+CM 1483 576 1132

Table 1. Comparison of downtime (ms).
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Figure 10. Throughput during live migration (result of off-the-
shelf mode has been truncated to save space).

three targets, and illustrate the results of off-the-shelf mode versus
VMScatter mode.

Impact on Single VM. We start first by measuring the perfor-
mance on a single VM in terms of throughput per second by ex-
amining the live migration of a Apache web server serving static
content at a high rate. The web server served 1000 files of 512 K-
Bytes, all of which were cached on memory. In this experiment, 10
httperf processes in a remote client host sent requests to the server
in parallel. Figure 10 illustrates the throughput achieved when con-
tinuously serving concurrent clients. At the start of the trace, the
normal running of the VM can serve about 354Mbits/sec. After the
live migration starts at the 9th second, the throughput of VMScat-
ter decreases to about 214Mbits/sec which is lower than 309Mbit-
s/sec of off-the-shelf. This is because the collecting and schedul-
ing stages consume more CPU resource than off-the-shelf mode
which only set flags. Then the page transfer phase serves 272Mbit-
s/sec for about 24 seconds. There is no obvious decrease compared
to off-the-shelf mode, thus implying the optimized permutation of
packets takes effect. The throughput in transferring dirtied pages
keeps about 305Mbits/sec which is higher than multicast. This may
be because the amount of dirtied pages in unicast is less than the
amount of pages during multicast, thus reserving more CPU and
network resource for applications running insides VMs. One sud-
den decrease is the result of VM suspending. After the VM is re-
sumed at the target host, the throughput returns to normal.

Impact on VM Cluster. We evaluate the performance of VM-
Scatter on VM Cluster via distcc [1] to build a kernel compila-
tion cluster to distribute the compilation tasks across the 12 VM-
s, and migrate back and forth repeatedly between the source and
three target hosts. Figure 11 compares the completion time for var-
ious memory size of VM under three live migration modes, the
result without migration is also given for comparison. The VM-
Scatter mode consumes almost the same compilation time as the
off-the-shelf method, and both increase by less than 20% compared
to NoMigration, owing to the similar CPU and network utilization.
The VMScatter+VM mode cost more time because the CPU over-
head of compression at the source host and decompression at the
target hosts.

Figure 11. Compilation time on migration.

5. Related Work
Live Migration. Clark et al. [10] first propose the pre-copy live
migration based on Xen platform, they transfer the page iteratively,
and boot the VM when the consistent state are reserved in target
host. However pre-copy migration may fail in harsh scenes such as
low network bandwidth and memory-intensive workload where the
amount of dirtied pages cannot converge. Hines et al. [27] propose
post-copy method, they first boot the VM on target host and then
copy the pages on demand, thus the memory pages will be trans-
ferred only once which both solves the problem of pre-copy and
reduces the total transferred data. Liu et al. [19] adopt the meth-
ods of ReVirt [12], achieve live migration by transferring the log
which records the execution of VM and replaying them at target
host. Deshpande et al. [11] consider migrating multiple machines
from one host to another, and propose live gang migration by page
sharing and delta transfer to reduce the amount of transmission. In
contrast, our concern is with the one-to-many migration and imple-
menting VMScatter by multicasting a single copy of the identical
pages instead of individual transfer.

Multicast. Multicast has been used to transfer images or snap-
shots for deploying multiple identical VMs in the IaaS platform
[18, 26]. VMScatter employs the multicast method to transfer the i-
dentical pages by single copy, combined with unicast to transfer the
unique pages and dirtied page. Besides, we specify a permutation
of packets with the solution of Hamilton Cycle problem to reduce
the network overhead occurred in multicast groups’ switchovers.

Page Sharing and De-duplication. Page sharing saves memory
consumption of VMs by merging the identical pages into one physi-
cal page. Bugnion et al. propose Disco [9], a tool that uses transpar-
ent page sharing to de-duplicate the redundant copies across VM-
s. Waldspurger et al. [28] improve Disco further by content-based
page sharing. Milos et al. [21] use sharing-aware block devices for
detecting duplicate pages on Xen virtual machine monitor. Gupta
et al. [14] improve the page sharing rate among VMs by dividing

Target Count 2 3 4 6

Benchmarks Max Min Avg. Prefer. Max Min Avg. Prefer. Max Min Avg. Prefer. Max Min Avg. Prefer.

Compilation 3.56 3.12 3.37 3.05 4.07 3.47 3.82 3.31 4.86 4.11 4.65 4.03 5.97 5.12 5.73 5.18
Sysbench 3.82 3.33 3.67 3.32 4.22 3.69 4.07 3.52 5.08 4.33 4.86 4.30 6.23 5.34 6.02 5.45
TPC-W 4.84 4.37 4.60 4.34 5.33 4.71 5.15 4.89 6.17 5.41 5.98 5.49 7.29 6.86 7.15 6.89

Table 2. Comparison of network traffic(GBytes) for groupings, the target host count is 2, 3, 4, 6.
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the page to sub-pages. Arcangeli et al. proposes KSM [5], a kernel
module in Linux that uses an unstable red-black tree to improve the
efficiency. We share a similar philosophy to page sharing, but a-
gainst the motivation of page sharing that focus on less physical
memory consumption, VMScatter is interested in de-duplicating
the identical pages in the packet to be multicasted. Furthermore,
our approach combines the selective hash with the red-black tree,
and achieves an order of magnitude speedup over the original hash
method on organizing millions of memory pages.

Placement of VMs. Many works have adopted live migration
technology to achieve power saving [23], load balance [29], SLA
[6], quality of service (QoS)[24], etc. In this paper, we consider
the network traffic metric and propose a grouping algorithm with
the aim of minimizing network traffic by selecting a preferable
placement of VMs.

6. Conclusions
We implemented VMScatter to migrate VMs to multiple hosts. Our
design and implementation addressed the issues involved in live
one-to-many migration, placement of VMs and multicast specific
options. By merging the identical pages into one page, VMScatter
multicasts the single page to many targets instead of transferring
these pages individually. The novel grouping method guides the
VM’s destination with respect to the network traffic over the net-
work. And we explore a further benefit allowed by compression
and multithreading. Through detailed evaluation, we show that the
performance is sufficient to make VMScatter a practical tool in da-
ta centers even for VMs running interactive loads. In the future, we
plan to investigate providing disk state migration, perhaps using
existing techniques to improve VMScatter for hosts connected to
independent storage, and evaluate VMScatter in complex network
topologies such as BCube [13].
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