
Muse: A Multimedia Streaming Enabled

Remote Interactivity System for Mobile Devices
Weiren Yu Jianxin Li Chunming Hu Liang Zhong

School of Computer Science and Engineering, Beihang University, Beijing, China.

Email: {yuweiren, lijx, hucm, zhongl} @act.buaa.edu.cn

ABSTRACT

Recent years we have witnessed the rapid advent of mobile cloud

computing, in which remote software is delivered as a service and

accessed by mobile device users over the Internet. However, most

existing remote display technologies for high motion application

(e.g, movie) have defects in latency and bandwidth. In this paper,

we designed an adaptive multimedia streaming enabled remote

interactivity system, Muse, to utilize remote resources with

reduced display update traffic and response latency. A window-

aware updating mechanism is designed as an adaptation scheme,

which allows users to focus on the current application in use and

also enable them to switch between applications on the fly.

Besides, a windowed display encoder using H.264 video codec is

integrated into the remote frame buffer protocol to achieve high

performance in compression to address the high latency limitation

of mobile Internet. Experimental results show that the windowed

display Muse mechanism can successfully reduce network traffic,

loading time and response latency of remote display and

interaction. Our system can achieve in average 22fps of 1024*768

desktop multimedia playbacks with good video quality under 1

Mbit/s of bandwidth limitation.

Categories and Subject Descriptors
C.2.4 [Computer-communication Network]: Distributed Systems

– Distributed applications, Client/Server.

General Terms

Management, Measurement, Performance, Design.

Keywords

Mobile Internet; Thin-client Computing; Remote Display; Remote

Access; Desktop Virtualization,

1. INTRODUCTION
The ubiquity of computation and communication capability

nowadays has driven information technology and its applications

into a data-centered era. In particular, cloud centers have provided

scalable storage and computation services, where software can be

completely executed, delivered as a service and accessed by

mobile device users over the Internet. At the same time, the

growing popularity of mobile Internet devices, such as smart

phones, pads, netbooks etc. has made a larger market for

information system. Accessing the Internet through Wi-Fi and 3G

networks has enabled people to work and play anywhere anytime.

Although a great success, the obstacles for the development of

mobile Internet and Internet devices have become obvious. First,

devices with different operating system and hardware make it

hard for an application to adapt to heterogeneous platforms.

Second, resource intensive applications have imposed intrinsic

limitations of mobile devices in terms of battery life and

processing power.

Therefore, software remote execution technology has become a

basic solution for these issues. Offloading applications or

computationally expensive tasks to resource-rich cloud servers

and receiving processing results, the client device could lower its

requirements of local hardware capabilities.

One of the software remote execution technologies is the thin-

client computing technology, which allows users to access remote

resources at the server through remote interactivity protocol. The

protocol sends user input to the server and transmit rendered

display to the client. Client device only needs to process display

and data transmission, as shown in Figure 1. All the applications

are executed in the cloud, decoupling applications and device

platforms, simplifying application adaptation.

There are three main advantages to thin-client computing solution.

1. Light weight: thin client software could run on modest

hardware. 2. Cross-platform: the applications run in the cloud

and wouldn’t need extra adaptation effort. 3. Low maintenance

cost: The client software is stateless. There is no synchronization

needed between client and server hence safe for data and easy to

maintain. Only the thin-client software itself needs to be tuned.

Legacy programs on mature platforms can be re-used. The thin

client remote execution solution could take advantage of cloud

environment to extend client device capabilities and simplify

software adaptation.

Figure 1. Thin Client System Architecture

Yet mobile thin client computing faces a lot of challenges. First,

compared to WIFI or wired network, the 3G wireless network and

WAN has a low, unstable bandwidth and uncontrollable latency.

Bandwidth and latency as such will severely degrade user

experience on interactivity intensive applications. Second,

prevalent thin-client systems use a static codec and encoding

granularity and lack adaptation to complex desktop scenarios (e.g.

desktop with high motion and low motion parts) and varying

network conditions in mobile environment. Third, the relatively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MUM’11, Dec 7–9, 2011, Beijing, China.

Copyright © 2011 ACM 978-1-4503-1096-3/11/12…$10.00..

small screen size of the mobile device will cause disfluent

experience of operations.

In this paper, a Multimedia Streaming Enabled remote

interactivity system (Muse in short) is designed for mobile

devices in a mobile cloud computing convergence. The major

contributions of Muse are as follows:

 Based on RFB protocol, we design a protocol that would

support windowed display and dynamic region encoding as

an adaptation to small device screen size and network

conditions. The protocol would allow users to view only the

preferred application window and switch quickly to other

application windows, reducing unnecessary bandwidth cost

incurred by the transmission of all application windows on a

desktop.

 We design a windowed display encoder using H.264 video

codec to compress screen updates, which will guarantee

high fidelity desktop playback in a bandwidth constrained

environment. In a high resolution desktop scenario, Muse

encoder supports high performance interaction for

applications with adequate window size.

 The Muse system prototype is implemented in our iVIC

platform [1], and experimental results show that the system

could reach video playback at 22fps in 1024*768 resolution.

The rest of the paper is organized as follows. Related works are

reviewed in Section 2. The design of Muse is discussed in Section

3. System implementation is shown in Section 4. The system is

evaluated in Section 5. A brief conclusion is given in Section 6.

2. RELATED WORK
There are several thin-client systems that have been developed.

VNC[2] and THINC[3] etc. are famous thin-client systems

proposed in academic research while in industry there are

Microsoft Remote Desktop[4], Citrix XenDesktop[5], VMware

View, Sun Ray and HP Remote Graphics and so on. Google is

creating Chromoting technology for ChromeOS for better user

experience to end users. In general, above systems are designed

for LAN environment with stable and better network conditions.

The bandwidth of current 3G network is still insufficient for these

systems. Besides, demand for resource intensive applications like

3D and multimedia processing on mobile devices is growing,

putting an even greater demand for technologies that could extend

the mobile device’s ability in terms of computation.

There are several aspects of thin-client computing technology

research: encoding method, transmission optimization and

architecture design. The related works are reviewed in these three

aspects.

Encoding Method

Encoding method is the most important part in a remote

interactivity system. Dealing with unstable network environment,

many researches have focused on the optimization of bandwidth

adaptation, high latency tolerance and screen content adaptation.

THINC and its portable version pTHINC[6] designed a push mode

interactivity protocol and achieved a best multimedia playback

performance with sufficient bandwidth. Its codec is efficient for

UI compression but suffers from compression performance

degradation over multimedia content encoding. Huifeng Shen et al

[7] designed a compression friendly codec that compresses the

text part and the image part of a desktop separately. This could

achieve a well balance in compression speed and ratio; it still

requires a larger bandwidth than the 3G network could provide for

an interactive experience. P. Simons[8][9] developed a hybrid

encoding system that switch between H.264 and VNC codec to

balance the computation cost of server and client device. The

switch is decided by a heuristic algorithm that monitors desktop

motion status. This solution is not capable of providing high

resolution real time streaming because of the intrinsic

performance limitation of video encoder. K. Tan et al [10]

improved by dividing a frame into high motion and low motion

sections and encode simultaneously with H.264 and VNC and

achieved 22.46fps of SIF video playback under 32KByte/s. This

solution is possibly capable of high resolution real time streaming

if the video is not in full screen mode but the paper didn’t provide

evaluation on this. Its high/low motion decision algorithm is based

on Linux X Window system and cannot be applied universally.

Transmission Optimization

Transmission optimization is also widely applied to reduce system

response latency. For display update data, caching [11-13],

prefetching[14] methods have been developed. For control data,

there are prioritizing[3] and command merging schemes[15].

Vankeirsbilck et al [11] borrowed the idea from video encoding

and proposed an optimization method based on history record.

The client automatically records the image of a newly open

window, sync it with the server and use a residue encoding

method for display update. The problem is as more and more

history cache is saved, the difference checking step will yield a

high cost and the record-residue method is not suitable for display

intensive multimedia applications.

Architecture Design

Satyanarayanan[16] identifies the influence of the latency of 3G

and WAN network to interactive programs and brings the concept

of Cloudlet to enhance user experience. Similar to the idea of

CDN(Content Delivery Network, Akamai[17]) , Cloudlet is a

resource hosting infrastructure proximate to client devices. It will

provide service to clients most adjacent to it thus taking advantage

of physical proximity, using low latency network to provide

interactive user experience. It provides an insight into a possible

solution to network latency though the relationship between cloud

and cloudlet is not defined or mentioned.

Besides, to evaluate a thin-client system, there are a few works

that provide feasible metrics [18-21]. S. Jae Yang et al [19] defines

Video Quality standard and is widely accepted among researchers.

Wang et al [18, 23-24] has focused on the research of cloud

gaming. First he set up a model that evaluates cloud mobile

gaming user experience and mapped them to objective parameters

like frame rate, bandwidth, network latency etc. and validated the

model. Based on this model, they developed a full frame H.264

encoding system that adjusts to different environment in terms of

bitrate, frame rate and response latency. However the metric is

game-dependent meaning that for different games the experience

model would also be different hence training a new adaptation

matrix for every game, let alone other types of applications

scenarios like video or office applications.

3. DESIGN OF MUSE

3.1 Overview of Muse
In this section, we introduce the design of Muse.

First, we propose a region encoding protocol based on RFB to

allow users to view only the application currently in use and

switch between applications to address the limit of device screen

size, saving network traffic generated by invisible update beyond

the range of the client device screen. This is also an adaptation to

encoding granularity to reduce response latency and a support to

high performance interaction of applications with adequate

window size in a high resolution desktop scenario.

Second, an encoding method using H.264 video codec is

introduced for high performance in compression to address the

high latency and low bandwidth limitation of mobile Internet. The

H.264 video codec is specially optimized for compression of

motion pictures and multimedia content hence reducing network

traffic greatly.

Figure 2. Overall Architecture of Muse System

The overall system architecture is as shown in Figure 2. User

would send command, region control messages and input (key,

mouse) to the cloud using the display interface. The H.264

Decoder would decode the display stream and update the display.

Server takes control messages and provide service accordingly.

3.2 Region Based Update Protocol Extension
In a mobile convergence, the mobile device always has a

relatively small screen with lower resolution than the desktop. It

would be inconvenient to use desktop applications or to switch

between applications. Besides, invisible screen updates are also

sent to the client, increasing network traffic. The region-based

screen update mode is designed to solve this inconvenience.

In this paper we propose a region encoding protocol based on

RFB and implement the region based display scheme. It allows

users to select which application window to display and eliminate

the display and updates of other applications. It also enables users

to switch between applications. Since the performance of H.264

encoder is very sensitive to the input image size, the region based

protocol extension could also optimize encoder performance in a

high resolution desktop scenario.

The process of the protocol is as follows:

1. Client sends “application switch” request.

2. Server traverses all application windows and sends window

handle and name to the client, and window snapshot if possible.

3. The user would select the application needed and send an

“application switch” command. Or user could cancel the operation.

4. The server performs the switch, sends screen update and new

frame buffer size information.

Following the thin-client principle, all synchronization and state

record is performed on the server side. The client won’t be aware

of the difference between applications besides its frame buffer

size.

To achieve runtime application switching without breaking the

connection, we extended the runtime segments of RFB protocol.

In practice the server will still support original RFB protocol

clients. The extended client will be served by an original server

when application switching function is not used.

There are four messages defined for this extension.

Messages from Client to Server:

 Window List Request:

 Window Switch Command:

Messages from Server to Client:

 Window List:

 Window Coordinates:

“Window list request” message is one byte long; the message type

is defined as 137.

When the server gets “window list request” message from the

client, it will traverse all open application windows and send back

“window list” message. The message is composed of message

type, data length and data, one, two, 35*length bytes respectively.

The data is composed of unit data of window handle and window

name.

The client sends “window switch command” to the server when

an application is to be called. The message is 11 bytes long, with

one byte message type and 10 bytes of window handle data.

The server will then send back “window coordinates” message as

a confirmation. The message contains the coordinates of the top

left pixel of the window.

The standard RFB protocol has a message that handles resolution

changes. The client will reset its frame buffer size accordingly.

When the window is minimized, the window size is recorded in

the system as 0*0. When the client receives message containing

such a window size, the client will send a “window list request” to

the server, preventing the client from crashing.

3.3 Screen Encoder Protocol Using H.264
H.264 is currently one of the best codecs in terms of compression

ratio. The goal of the system is to utilize H.264 video encoder in

screen compression to optimize system performance in high

motion scenarios.

The system is based on RFB protocol with region encoding

extension. Standard RFB protocol employs a client-driven update

mode. The server captures, compresses the screen and sends the

update to the client once it receives a request from the client. The

system architecture is as shown in Figure 3.

In this design, we keep the client-pull mode of update and replace

the RFB codec with H.264 codec. In implementation we keep the

0x89

1

Wnd Handle0x8A

1 11

Wnd Handle | Wnd NameLength=35x0x0D

1 3 3+35x

X Cords.0x0D

1 3 5

Y Cords.

original VNC codecs functional for further research and guarantee

that both codecs could be utilized for compression.

Figure 3. RFB Protocol Update Method

Figure 4. H.264 Application Mode and Video Sequence

Definition

In consideration of interactivity performance, client-driven update

mode and the inter-prediction feature of H.264, we designed a

H.264 screen encoder as such: once the server accepts a screen

update request from the client, it will capture the screen and

encode it as a frame in the H.264 video sequence, as shown in

Figure 4.

In the designed system, every frame is captured when the server

accepts a request and the system latency depends on encoding

time, network speed and latency. Cache is not added here because

the encoder is slower than the decoder hence the time gap

between two frames is sufficient for the decoder to process.

Besides, encoder speed is less than real time(defined as ≥25 fps)

thus introduces extra system latency.

The system design inherits original “Client Request – Server

Response” update mode of VNC system to maintains system

consistency in implementation and convenient for subsequent

experiments and modifications.

The format of update request doesn’t need to be modified. The

client needs to send full screen update request instead of

incremental update request because the H.264 encoder takes in

fixed size input. The screen update content message needs to be

modified to tag H.264 or VNC data. A tag of 2 bytes is inserted

after the original message header. The message format is shown

as following,

4. IMPLEMENTATION OF MUSE
In this section we discuss how Muse system is implemented.

4.1 System Architecture
The detailed architecture of the system is shown in Figure 5. The

server and the client communicate through a TCP channel. The

server accepts requests from the client and translates the RFB

protocol message through event manager. The event manager

would send key/mouse input to the selected application, pass

region message to region control module and trigger H.264

encoder when a screen update message is received. The region

control module would set region parameters according to the

client’s request. When H.264 encoder is triggered, it will first read

out bitmap from the frame buffer according to the region

parameters.

The client would provide functions of region control, command

control and keyboard/mouse input. The commands will be passed

into the event manager, translated into RFB protocol message and

sent to the remote display server. The H.264 decoder is

responsible for decoding display streaming data and updating it to

client device’s frame buffer to perform display.

Figure 5. System Architecture

RFBUpdate Tag Length Data

4 6 10 Length+10

4.2 Server Implementation
The server implementation is based on MetaVNC 0.6.6[25].

(1) Windowed Display and Application Switching

When the server receives a window list message, it will run the

implemented EnumWindows function to traverse current

application windows and return their handles and titles. Then

server would encapsulate the defined Window List message and

send data to the client.

In the server, the Client Thread and Desktop Thread are owned by

two virtual windows to implement Window Message passing. The

Client Thread is responsible for interacting with the client device.

The desktop thread is responsible for all kinds of functions that

involve desktop, like screen capture etc., as shown in Figure 6.

When the client device sends an update request, the Client Thread

will process first then send it to Virtual Desktop Window to be

processed by the Desktop Thread. The Desktop Thread holds a

vncServer pointer which has a list of all clients through which

updates are passed. Using this model, all clients will receive the

same screen update.

Figure 6. Data Structure of Server

Client thread holds a vncServer pointer to get and set current

shared screen area information. When the client thread receives a

window switch command, it will set screen sharing method to

“Windows” opposed to “Desktop”, and set the shared region

rectangle through vncServer pointer.

When the Desktop Thread captures the screen, it will check if the

region is the same as the last screen shot. If different, server

would send new frame buffer size message. This message is

defined by the RFB protocol and used here as a window size

update message. Actually, an application window is a “whole

desktop” to the user.

We maintain the data structure interface based on RECT, which

the screen capture function, frame buffer difference checking

function and client thread initialization function are all based on.

(2) H.264 Based Encoder

For the H.264 implementation, we use T264 project[26] and

implement T264EncoderUtil class to encapsulate encoder

initialization, RGBA to YUV transcoding and encoding functions.

The initialization function is called when the application starts or

application switching.

In the VNC system, one update could possibly include cursor

shape, cursor postion, CopyRect or LastRect updates. In the

update function of H.264, we added support for these updates to

maintain compatibility.

4.3 Client Implementation
(1) Windowed Display and Application Switching

The implementation is based on android VNC Viewer[27].

Implementing window list request is very simple. An item in the

menu and its mapping request is added.

Application switching is more complicated. Related data

structures are all referenced in the class VncCanvasActivity,

which handles user interface and its operations, and VncCanvas,

which encapsulates the canvas view and the RFB message loop.

Other data structures include BitmapData, which provides

functions to draw bitmap and InputHandler, which provides

different user operation mode.

When the client receives a frame buffer size update message, the

processing algorithm is as follows:

1. Modify the frame buffer size held in RfbProto.

2. Delete BitmapData and reallocate one with new image size.

3. Reallocate InputHandler, Scaling.

Android Activity’s data member cannot be modified in a non-UI

thread. The InputHandler and Scaling couldn’t be

modified within the RFB message loop, where the algorithm is

processed. So we implemented a windowSwitchListener

class as a callback function to monitor the running status and

force the function to be run in UI thread. This technique is also

used in server application list display.

In practical use we find that if failed to restore, a minimized

window size is 0*0. We use window list request function to

handle this exception to prevent crash and maintain continuous

experience.

(2) H.264 Based Decoder

The implementation is based on Tight VNC Viewer[28] for

Windows.

Figure 7. VNC Frame Update Procedure

Figure 8. Improved Frame Update Procedure

The original VNC implementation takes t = double_lantency +

transmission + decode_t + encode_t to update one frame, as

shown in Figure 7. Since it takes H.264 codec more time to

encode than to decode, we changed the process into Figure 8 and

improved system performance prominently.

To decode H.264 stream, we implement a finite state machine as

shown in Figure 9. The state machine starts at receiving data

streaming and ends when no data is further fed. We also

implemented YUV data extraction from the encapsulated data

structure.

Figure 9. Decoder Finite State Machine

In the original VNC viewer, there is already a set of display

methods based on SetPixel. There are two main reasons that

this is not feasible. First, the efficiency and performance of this

function is much lower than requirement. Second, the Bitmap data

format used by H.264 decoder is different from the VNC display

system. We use DIBDraw functions to draw the decoded bitmap,

implement a virtual window thread to process window messages

and use the original Device Context to embed the display into

VNC display region.

5. EVALUATION OF MUSE
In this section, system performance is evaluated in real application

over a wide range of network conditions and prevalent thin-client

computing systems are involved for comparison.

5.1 Windowed Display And Application

Switching

5.1.1 Prototype
In experiment an Android 2.2 tablet device is used as client and a

Windows7 Ultimate x86 PC as server. From Figure 10 we can see

that the original server resolution is 2880*900 while the device

resolution being 800*480. The whole desktop is being transferred

to the client and only part of it is visible.

Figure 10. Server Desktop Information

Figure 11 shows the application list menu and the windowed

display image. Users can switch applications through the menu.

(a) (b)

(c) (d)

Figure 11. Windowed Display and Application Switching

5.1.2 Bandwidth And Response Time Optimization
For mobile devices, Internet traffic is an expensive resource. To

reduce traffic load and boot system performance, we propose the

region based encoding scheme. In experiment, we log onto the

VNC server using original method and region based method

respectively, compare the two methods and record their traffic.

Results show that the new method boosts system response

performance and reduces Internet traffic.

Figure 12. Traffic of MSPaint

Figure 12 and Table 1 shows the traffic record of the first 20

seconds while loading MSPaint software. The original method

produced a total traffic of 2676.3KB while the region based

method 463.7KB.

The first frame size is reduced so that the traffic and start time is

reduced. In slower network the latency reduction could be more

prominent. We can also see that there is background traffic in the

original method, as shown in Table 1. This is because other

applications produce screen changes and updated to the client.

Experiment test bed:

Server: INTEL Q9550 @2.83GHZ, 3GB RAM, Windows 7

Ultimate X86.

Client: HTC G3 CPU@526MHz, 190MB RAM, Android 2.2.

Network: Server in 1Gb/s 1ms LAN, Client in WiFi.

Table 1. Traffic of MSPaint unit: KB/s

No Non-windowed Windowed No Non-windowed Windowed

1 0.3 0.9 11 7.6 0

2 0.8 0.6 12 14.9 0

3 1 0.1 13 13.6 0

4 684.4 107.4 14 14 0

5 930.7 354.6 15 13.6 0

6 910 0.1 16 14.9 0

7 3.4 0 17 13.7 0

8 10 0 18 10.8 0

9 2 0 19 14.9 0

10 0.9 0 20 14.9 0

5.2 Video Playback Performance
This experiment evaluates the video playback performance and

traffic load of the involved systems over a wide range of network

conditions. The involved thin-client systems are THINC, VNC,

RDP for Windows7 and the system proposed by MSRA. The

above systems differ in update mode, screen encoding algorithms

and network protocol etc.

5.2.1 Test Bed Setup
(1) Network environment:

We used a 1Gb/s, 1ms latency LAN network to emulate different

network conditions. The bandwidth we emulated is 1Gb/s, 10Mb/s

and 1Mb/s.

Network emulation is performed on server side. For Windows

system, we used Shunra VE Desktop Client free

version. In Linux we used netem command. Wireshark 1.2.8 is

used to sniff and record network traffic.

Hardware:

Server: INTEL Q9550 @2.83GHZ,

3GB RAM, Windows 7 Ultimate X86;

Client: INTEL P8400 @2.26GHZ,

2GB RAM, Windows 7 Ultimate X86。

For THINC，we used VMWare 7.0 to

run Ubuntu 9.04 system on server

hardware.

(2) Systems and protocols used for

comparison:

VNC: Tight VNC with Mirror Driver;

RDP: RDP pre-installed on Windows 7

Ultimate X86;

THINC: As downloaded from [29].

Muse (ours):H264 codec as implemented in T264 project.

(3) Test video sequence:

Flyboys fighting scene, 1000 frames in total.

5.2.2 Video Quality Benchmark
We borrowed the video quality evaluation method developed by

Yang et al [32]. But Yang’s method is applied to screen encoding

algorithms that doesn’t exploit inter-frame redundancies; we

modified the method and proved that it is valid for horizontal

comparison.

The original method is based on traffic. The server plays a video

sequence slow enough that every frame is completely processed.

The traffic for each frame is recorded as a reference traffic load

for a ‘perfect’ playback. Then play the video at normal speed and

record the traffic load. The same number of frames is played each

time. Define Video Quality（V.Q.） as such:

𝑉. 𝑄.=

𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(24𝑓𝑝𝑠)/𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘𝑇𝑖𝑚𝑒(24𝑓𝑝𝑠)
𝐼𝑑𝑒𝑎𝑙𝐹𝑃𝑆(24𝑓𝑝𝑠)

𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(1𝑓𝑝𝑠)/𝑃𝑙𝑎𝑦𝑏𝑎𝑐𝑘𝑇𝑖𝑚𝑒(24𝑓𝑝𝑠)
𝐼𝑑𝑒𝑎𝑙𝐹𝑃𝑆(1𝑓𝑝𝑠)

Video Quality formula could be transformed:

𝑉. 𝑄.=

𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(24𝑓𝑝𝑠)
𝑇 𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝑚𝑏𝑒𝑟𝑠
𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(1𝑓𝑝𝑠)
𝑇 𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝑚𝑏𝑒𝑟𝑠

=
 . 𝐹𝑟𝑎𝑚𝑒 𝐷𝑎𝑡𝑎𝑠𝑖 𝑒(24𝑓𝑝𝑠)

 . 𝐹𝑟𝑎𝑚𝑒 𝐷𝑎𝑡𝑎𝑠𝑖 𝑒(1𝑓𝑝𝑠)

Or:

𝑉. 𝑄.=

𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(24𝑓𝑝𝑠)
𝑇 𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝑚𝑏𝑒𝑟𝑠
𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(1𝑓𝑝𝑠)
𝑇 𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝑚𝑏𝑒𝑟𝑠

=
𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(24𝑓𝑝𝑠)

𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑(1𝑓𝑝𝑠)

We can see from the above formula that Video Quality is defined

as ratio of average frame data size in real-time display and

reference playback cases. When the frames are independent to

each other, the result is most accurate, because their frame size,

seen as weight, is within small differences, which is the case of

prevalent thin-client system. H.264 encoder exploits inter-frame

redundancies which causes dependencies between frames and the

size of frames are vastly diverse. So we modified the encoder

formula as such:

𝑉. 𝑄.= {

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓 𝑟𝑚 𝑙𝑎 𝐷𝑃 𝑉 𝑒𝑡𝑐.

𝑓𝑟𝑎𝑚𝑒 𝑚𝑠(24𝑓𝑝𝑠)

𝑇 𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝑚𝑠
 𝑟𝑠

We count the actual frame number received by the client and

define the frame number ratio as video quality, which guarantees

that each element in the formula has equal weight.

5.2.3 Video Quality Comparison
As shown in Table 2 and Figure 14, different colors stand for

experiment result from different network bandwidth. The server

screen size is 1024*768.

Table 2. Video Quality Detailed Data

Protocol \ bandwidth 1Mb/s 10Mb/s 1Gb/s

VNC 1.9% 3.8% 3.8%

MSRA Paper 20% 65% 72%

RDP 2.2% 5.9% 88.4%

THINC 1% 20% 100%

Muse (ours) 74.2% 74% 80.3%

From the result we can infer that the system proposed in this paper

is the most insensitive for bandwidth changes and has the best

performance in low bandwidth environment and maintains a high

quality of video playback. In a 3G mobile internet convergence,

the network bandwidth is 1Mb/s-2Mb/s. The proposed system

could satisfy remote video playback in terms of bandwidth

consumption and user experience. We can also see that the

performance of the system should be improved in high bandwidth

network environment.

Figure 13. FLYBOYS

Figure 14. Video Quality Comparison

5.3 Encoder Efficiency

5.3.1 Network Traffic Load Comparison
This experiment is designed to show the detailed bandwidth

consumption of each participating system under different network

conditions.

Experimental results are shown in Figure 15 and Table 3. The unit

of vertical axis is Mb/s. The bandwidth consumption for RDP in

the 1Gb/s environment is 37.02Mb/s.

Figure 15. Traffic Load

Table 3. Traffic Usage Detailed Data

 Unit: Mb/s

Protocol \ Bandwidth 1Mb/s 10Mb/s 1Gb/s

VNC 0.986 2.33 2.36

Muse (ours) 0.76 0.89 0.904

RDP 0.81 2.18 37.02

MSRA Paper 1 10 10

Results show that the proposed system is insensitive to network

bandwidth changes and consumes lower bandwidth than other

solutions. The bandwidth utilization rate is relatively low due to

TCP protocol. This could be solved by using UDP protocol. We

believe that the results could potentially be better. Combining the

video quality results we can see the proposed system has a best

video playback performance.

The experiments are done under LAN network with 1ms latency.

Although we have limited network bandwidth, latency is not taken

into account. The “Client-Pull” mode of screen update is very

sensitive to network latency. It takes encoding time, data

transmission time and round trip latency time for every frame to

be fully processed. Latency could be reduced by employing push

update mode with traffic control or using physically proximate

hosts.

5.3.2 CPU Utilization Rate
This experiment is designed to show the CPU utilization rate of

both the server and the client. The result is as shown in Table 4.

Table 4. CPU Utilization

Protocol \ Role Server Client FPS

VNC 12% Near 100% 0.95

Muse (ours) 80% 60% 20

RDP 10% invisible 22

THINC 10% 10% 25

The above result is recorded when each system is at their best

performance displaying FLYBOYS movie. The VNC client CPU

is fully occupied because of implementation. In Tight VNC, the

display update function is SetPixel, which has low efficiency

and would cost a lot computation power.

H.264 codec has high CPU utilization rate when providing high

quality video play back. Another experiment that records the CPU

utilization rate of the server at different frame rates has been

performed. The result is shown in Table 5. We can see that the

CPU utilization rate is nearly linear to frame rate.

Table 5. Server CPU Usage at Different Frame Rate

CPU Frame Rate CPU Frame Rate

45% 8 67% 16

54% 10 72% 18

58% 12 80% 20

61% 14 85% 22

5.4 Small Region Update Performance
This experiment compares small region update performance of the

proposed system and the VNC system. VNC codec represents the

image based encoding method. We selected the sample that could

be fully processed by both systems. As shown in Figure 16, the

cyan large bold rectangle is a large area slide while the small

green bold rectangle indicates a low motion gif animation.

Figure 16. Large Region and Small Region

In experiment, we measure animation playback traffic and frame

rate. There are two animations in the display as said above. Both

animations are played in Group 1 while only the smaller

animation is played in Group 2. The test bed is the same as video

quality experiments.

The VNC system uses Tight Encoding method. Both systems use

Mirage Driver for better screen capture performance. The result is

shown in Table 6.

Table 6. Small Region Update Experimental Result

Group/

Codec

1 2

Data(Mb/s) Speed(fps) Data(Mb/s) Speed(fps)

VNC 1.428 26.5 0.241 29.3

H264 0.277 22.6 0.14 22.3

There are three main aspects as follows for comparison,

1. Sensitivity to screen changes

H.264 encoding has high algorithm complexity and insensitive to

screen changes with a more stable frame rate. The traffic is vastly

different under the two scenarios. VNC tight encoding is very

sensitive to desktop changes with a drop of 3fps for average frame

rate. This is actually an abrupt experience because there is a large

gap between the switching of each slide.

2. Frame rate and response time

From the average frame rate we can know that for small updates

VNC system has a very high frame rate. In terms of user

experience for small region update, VNC system is better than the

proposed system because of the higher frame rate.

3. Bandwidth consumption

Though greatly different, the absolute traffic load of both are not

great. This gives us a hint that in compromise we could have a

screen codec that combines the advantages of both codecs to adapt

to mobile Internet environment.

A video encoding algorithm exploits inter-frame redundancies

while a typical desktop scenario has many discontinuous screen

changes like switching applications. The video encoder has a very

stable performance. Further experiments show that H.264 encoder

is not sensitive even to full screen changes but sensitive to frame

size. The proposed system could reach an average frame rate of 20

-22fps at 1024*768 while VNC system is very sensitive to large

screen updates.

We can conclude that VNC has an advantage over the proposed

system for small region updates like mouse hover effects or small

region of animation while the video encoder is more suitable for

display intensive scenarios. We can also see that none of the

prevalent thin-client systems have used video encoder for screen

updates, because of its sensitivity to input frame size and high

computation cost. The advantage of VNC codec is actually the

advantage of all image-based codecs.

6. CONCLUSION
The ubiquity of computation and communication nowadays has

driven information technology and its applications into data-

centered era. The popularity of mobile Internet devices is growing

fast and will bring endless possibilities to the future of computing.

Yet application adaptation and resource limitation are two main

obstacles for the development of mobile Internet devices.

Thin-client computing is a feasible solution and the Muse system

is designed to provide interactive user experience over mobile

Internet.

The proposed system has three advantages:

1. Windowed display could optimize the traffic cost, application

loading time and interactivity latency and help users focus on one

application. The application switching mechanism would allow

users to switch between applications and adapt encoding

granularity according to user.

2. The proposed H.264 based encoding method has achieved

better performance in terms of video play back quality, bandwidth

consumption and frame rate in comparison with state-of-the-art

thin client systems. It is a significant step towards a mature remote

interactivity system over mobile Internet. We also notice the

system’s relatively high CPU cost.

3. The proposed system could achieve interactivity performance

in common desktop scenarios and the experiments show that the

video codec has advantage in stability and quality of service.

Through experiment we proposed a feasible way to improve

system performance.

Experimental results show that the Muse mechanism has

successfully reduced network traffic, loading time and response

latency of remote display and interaction. The proposed system

could play “Angry Bird” webpage edition under 1Mbit/s

bandwidth with interactive performance at 1024*768.

We have identified the intrinsic limitation of H.264 encoding,

including high resolution encoding performance degradation, high

computing cost, slow response to small region update etc. The

future work will focus on adaptive encoding and architectural

design of a new remote interactivity system with regards to these

problems.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge Dr. Yan Lu in MSRA for his

suggestions and helps, and Dr. Mingjing Ai and Lili Zhao for their

aid on H.264 codec. This work is also partially supported by

National Nature Science Foundation of China (No. 61170294),

and China 973 Fundamental R&D Program (No. 2011CB302602)

and Program for New Century Excellent Talents in University

2010.

8. REFERENCES
[1] Jianxin Li, Yu Jia, Lu Liu, Tianyu Wo. CyberLiveApp: A

secure sharing and migration approach for live virtual

desktop applications in a cloud environment. Future

Generation Computer Systems. August 2011.

[2] RFB Protocol. http://www.realvnc.com/docs/rfbproto.pdf

[3] R. A. Baratto, L. Kim, J. Nieh, THINC: A Virtual Display

Architecture for Thin-Client Computing, Proceedings of 20th

ACM Symposium on Operating System Principles(SOSP

2005), Brighton, UK, October 23-26, 2005. Pp. 277-290.

[4] RDP,

http://en.wikipedia.org/wiki/Remote_Desktop_Protocol

[5] CITRIX, http://www.citrix.com

[6] Joeng Kim, Ricardo A. Baratto, and Jason Nieh, pTHINC: A

Thin-Client Architecure for Mobile Wireless Web.

Proceedings of the 15th International World Wide Web

Conference(WWW 2006), May 23-26. Edinburgh, Scotland.

2006,143-152.

[7] Huifeng Shen, Yan Lu, Feng Wu, Shipeng Li, “A

High-Performance Remote Computing Platform”,

Proceedings of the 2009 IEEE International

Conference on Pervasive Computing and

Communications.

[8] L. Deboosere, J. De Wachter, P. Simoens, F. De Turck, B.

Dhoedt, and P. Demeester, “Thin Client Computing

Solutions in Low- and High-Motion Scenarios,” Proc. IEEE

Third International Conference on Networking and Service,

pp. 38-43, June. 2007.

[9] P. Simoens, P. Praet, B. Vankeirbilck, and J. De Wachter,

“Design and Implementation of a Hybrid remote display

protocol to optimize multimedia experience on thin client

devices,” Proc. IEEE Telecommunication Networks and

Applications Conference, pp. 22-25, Dec. 2008.

[10] Kheng-Joo Tan, Jia-Wei Gong, Bing-Tsung Wu, Dou-Cheng

Chang, Hsin-Yi Li, Yi-Mao Hsiao, Yung-Chung Chen, Shi-

Wu Lo, Yuan-Sun Chu, Jiun-In Guo, A remote thin client

system for real time multimedia streaming over VNC, ICME

2010, pp.992-997, 2010 IEEE International Conference on

Multimedia and Expo, 2010.

[11] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere,

F. De Turck, B. Dhoedt, P. Demeester, “Bandwidth

Optimization for Mobile Thin Client Computing through

Graphical Update Caching”, ATNAC 2008.

[12] M. Mitrea, P. Simoens, B. Joveski, J. Marshall, A.

Taguengayte, F. Preteux, B. Dhoedt, “BiFS-based

approaches to remote display for mobile thin clients,” in

Proceedings of the SPIE - The International Society for

Optical Engineering, vol. 7444, 2009 2009, p. 74440F (8pp.).

[13] A. Boukerche, R. W. N. Pazzi, and J. Feng, “An end-to-end

virtual environment streaming technique for thin mobile

devices over heterogeneous networks,” COMPUTER

COMMUNICATIONS, vol. 31, no. 11, pp. 2716–2725, JUL

15 2008.

[14] R. W. N. Pazzi, A. Boukerche, and T. Huang,

“Implementation, measurement, and analysis of an image-

based virtual environment streaming protocol for wireless

mobile devices,” IEEE TRANSACTIONS ON

INSTRUMENTATION AND MEASUREMENT, vol. 57, no.

9, pp. 1894–1907, SEP 2008.

[15] P. Simoens, B. Vankeirsbilck, L. Deboosere, F. A. Ali, F. De

Turck, B. Dhoedt, and P. Demeester, “Upstream bandwidth

optimization of thin client protocols through latency-aware

adaptive user event buffering,” Int. J. Commun. Syst.,

Accepted for publication [available online], 2010.

[16] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres,

Nigel Davies. The case for VM-based Cloudlets in Mobile

Computing, IEEE Pervasive Computing, November 2009.

[17] Akamai – http://www.akamai.cn

[18] S. Wang, S. Dey, “Modeling and Characterizing User

Experience in a Cloud Server Based Mobile Gaming

Approach”, GLOBECOM 2009.

[19] S. J. Yang, J. Nieh, M. Selsky, N. Tiwari, “The

Performance of Remote Display Mechanisms for Thin-Client

Computing”, Proceedings of the 2002 USENIX Annual

Technical Conference, June 2002.

[20] Niraj Tolia, David G. Andersen, and M. Satyanarayanan,

“Quantifying Interactive User Experience on Thin Clients”,

COMPUTER 2006.

[21] Y. Chang, P.Tseng, K. Chen, C. Lei, “Understanding The

Performance of Thin-Client Gaming”, CQR Workshop 2011.

[22] Y. Endo, Z. Wang, J. Chen, M. Seltzer, “Using Latency to

Evaluate Interactive System Performance”, OSDI 1996.

[23] S. Wang, S. Dey, “Rendering Adaptation to Address

Communication and Computation Constraints in Cloud

Mobile Gaming”, GLOBECOM 2010.

[24] S. Wang, S. Dey, “Addressing Response Time and Video

Quality in Remote Server Based Internet Mobile Gaming”,

WCNC, 2010.

[25] MetaVNC, http://metavnc.sourceforge.net/

[26] T264, http://sourceforge.net/projects/t264/

[27] Android VNC Viewer, http://code.google.com/p/android-

vnc-viewer/

[28] TightVNC, http://www.tightvnc.com/

[29] THINC Project,

http://systems.cs.columbia.edu/projects/thinc/

