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Abstract

The management of virtual machine cluster (VMC) is
challenging owing to the reliability requirements, such
as non-stop service, failure tolerance, etc. Distributed s-
napshot of VMC is one promising approach to support
system reliability, it allows the system administrators of
data centers to recover the system from failure, and re-
sume the execution from a intermediate state rather than
the initial state. However, due to the heavyweight na-
ture of virtual machine (VM) technology, application-
s running in the VMC suffer from long downtime and
performance degradation during snapshot. Besides, the
discrepancy of snapshot completion times among VMs
brings the TCP backoff problem, resulting in network in-
terruption between two communicating VMs. This paper
proposes HotSnap, a VMC snapshot approach designed
to enable taking hot distributed snapshot with millisec-
onds system downtime and TCP backoff duration. At the
core of HotSnap is transient snapshot that saves the min-
imum instantaneous state in a short time, and full snap-
shot which saves the entire VM state during normal oper-
ation. We then design the snapshot protocol to coordinate
the individual VM snapshots into the global consistent
state of VMC. We have implemented HotSnap on QE-
MU/KVM, and conduct several experiments to show the
effectiveness and efficiency. Compared to the live migra-
tion based distributed snapshot technique which brings
seconds of system downtime and network interruption,
HotSnap only incurs tens of milliseconds.

1 Introduction

With the increasing prevalence of cloud computing and
IaaS paradigm, more and more distributed application-
s and systems are migrating to and running on virtual-
ization platform. In virtualized environments, distribut-
ed applications are encapsulated into virtual machines,
which are connected into virtual machine cluster (VM-

C) and coordinated to complete the heavy tasks. For
example, Amazon EC2 [1] offers load balancing web
farm which can dynamically add or remove virtual ma-
chine (VM) nodes to maximize resource utilization; Cy-
berGuarder [22] encapsulates security services such as
IDS and firewalls into VMs, and deploys them over a
virtual network to provide virtual network security ser-
vice; Emulab [12] leverages VMC to implement on-
demand virtual environments for developing and testing
networked applications; the parallel applications, such as
map-reduce jobs, scientific computing, client-server sys-
tems can also run on the virtual machine cluster which
provides an isolated, scaled and closed running environ-
ment.

Distributed snapshot [13, 27, 19] is a critical technique
to improve system reliability for distributed applications
and systems. It saves the running state of the application-
s periodically during the failure-free execution. Upon a
failure, the system can resume the computation from a
recorded intermediate state rather than the initial state,
thereby reducing the amount of lost computation [15]. It
provides the system administrators the ability to recover
the system from failure owing to hardware errors, soft-
ware errors or other reasons.

Since the snapshot process is always carried out peri-
odically during normal execution, transparency is a key
feature when taking distributed snapshot. In other word-
s, the users or applications should be unaware of the
snapshot process, neither the snapshot implementation
scheme nor the performance impact. However, the tra-
ditional distributed systems either implement snapshot
in OS kernel [11], or modify the MPI library to sup-
port snapshot function [17, 24]. Besides, many systems
even leave the job to developers to implement snapshot
on the application level [3, 25]. These technologies re-
quire modification of OS code or recompilation of appli-
cations, thus violating the transparency from the view of
implementation schema.

The distributed snapshot of VMC seems to be an ef-



fective way to mitigate the transparency problem, since it
implements snapshot on virtual machine manager (VM-
M) layer which encapsulates the application’s running s-
tate and resources without modification to target applica-
tions or the OS. Many systems such as VNSnap [18] and
Emulab [12] have been proposed to create the distributed
snapshot for a closed network of VMs. However, these
methods still have obvious shortcomings.

First, the snapshot should be non-disruptive to the up-
per applications, however the state-of-the-art VM snap-
shot technologies, either adopt stop-and-copy method
(e.g., Xen and KVM) which causes the service are com-
pletely unavailable, or leverage live migration based
schema which also causes long and unpredictable down-
time owing to the final copy of dirty pages [26].

Second, the distributed snapshot should coordinate the
individual snapshots of VMs to maintain a global consis-
tent state. The global consistent state reflects the snap-
shot state in one virtual time epoch and regards causali-
ty, implying the VM before snapshot cannot receive the
packets send from the VM that has finished the snapshot
to keep the consistent state during distributed snapshot
(further explanations about global consistent state can be
referred in appendix A). However, due to the various VM
memory size, variety of workloads and parallel I/O oper-
ations to save the state, the snapshot start time, duration
time and completion time of different VMs are always
different, resulting in the TCP back-off issue [18], there-
by causing network interruption between the communi-
cating VMs. Figure 1 demonstrates one such case hap-
pened in TCP’s three-way handshake. Worse still, for
the master/slave style distributed applications, the mas-
ter always undertake heavier workloads so that cost more
time to finish the snapshot than the slaves, therefore, the
slaves which finish the snapshot ahead cannot commu-
nicate with the master until the master snapshot is over,
causing the whole system hung. As a result, the mas-
ter snapshot becomes the short-board during distributed
snapshot of master/slave systems.

Third, most distributed snapshot technologies adop-
t the coordinated snapshot protocol [13] to bring the
distributed applications into a consistent state. This re-
quires a coordinator to communicate snapshot-related
commands with other VMs during snapshot. In many
systems, the coordinator is setup in the customized mod-
ule such as VIOLIN switch in VNSnap [18] and XenBus
handler used in Emulab [12], thus lack of generality in
most virtualized environments.

To mitigate the problems above, we propose HotSnap,
a system capable of taking hot distributed snapshot that is
transparent to the upper applications. Once the snapshot
command is received, HotSnap first suspends the VM,
freezes the memory state and disk state, creates a tran-
sient snapshot of VM, and then resumes the VM. The
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Figure 1: A TCP handshake case during distributed s-
napshot. V M2 first sends SYN to V M1 to request a TCP
connection, at this moment V M2 has not begin its snap-
shot; V M1 receives this request, turn its own state into
SYN RCVD, and then sends SYN/ACK back to V M2.
We notice that now V M1 has finished snapshot, and based
on the coordinated protocol, packets sent from V M1 will
not be accepted by V M2 until V M2 has finished its own
snapshot. If V M2’s snapshot duration exceeds TCP time-
out, connection will fail.

transient snapshot only records the minimum instanta-
neous state, including CPU and device states, as well
as two bitmaps reserved for memory state and disk s-
tate, bringing only milliseconds of VM downtime, i.e.,
hot for upper applications. The full snapshot will be ac-
quired after resuming the VM, it saves the entire memory
state in a copy-on-write (COW) manner, and create the
disk snapshot in the redirect-on-write (ROW) schema;
the COW and ROW schemas enable creating the full s-
napshot without blocking the execution of VM, i.e., live
snapshot. Because the transient snapshot introduces on-
ly milliseconds of downtime, the discrepancy of down-
time among different VM snapshots will be minor, there-
by minimizing the TCP backoff duration.

HotSnap is completely implemented in VMM layer, it
requires no modification to Guest OS or applications, and
can work without other additional modules. The major
contributions of the work are summarized as follows:

1) We propose a VM snapshot approach combined of
transient snapshot and full snapshot. The approach com-
pletes snapshot transiently, enables all VMs finish their
snapshots almost at the same time, which greatly reduces
the TCP backoff duration caused by the discrepancy of
VMs’ snapshot completion times.

2) A classic coordinated non-blocking protocol is sim-
plified and tailored to create the distributed snapshot of
the VMC in our virtualized environment.

3) We implement HotSnap on QEMU/KVM platform
[20]. Comprehensive experiments are conducted to eval-
uate the performance of HotSnap, and the results prove
the correctness and effectiveness of our system.

The rest of the paper is organized as follows. The
next section provides an analysis of the traditional dis-



b) VNSnap distributed snapshot.a) VNSnap distributed snapshot.

pre-snapshot live-snapshot downtime post-snapshot

1

2

3

VM1 VM2 VM1 VM2

b) HotSnap distributed snapshot.a) VNSnap distributed snapshot.

pre-snapshot live-snapshot suspended post-snapshot

Arrow1

Arrow2

Arrow3

VM1 VM2 VM1 VM2

SNAPSHOT

Figure 2: Comparison of VNSnap and HotSnap.

tributed snapshot and their problems. Section 3 intro-
duces the HotSnap method, describes the transient snap-
shot, full snapshot and coordinated protocol. Section
4 describes the implementation-specific details on QE-
MU/KVM platform. The experimental results are shown
in Section 5. Finally we present the previous work re-
lated to HotSnap in section 6 and conclude our work in
Section 7.

2 An Analysis of Distributed Snapshot

The distributed snapshot includes independent VM s-
napshot and the coordinated protocol. Stop-and-copy
schema is a simple way to create snapshot of individ-
ual VM, but this schema introduces long downtime of
Guest OS and the upper applications running inside the
VM, thus is impractical in many scenarios that deliver
services to users. The live snapshot technologies lever-
age pre-copy based migration to achieve live snapshot
by iteratively saving the dirty pages to the snapshot file
[12, 18]. In this section, we will analyze the live mi-
gration based distributed snapshot proposed in VNSnap
[18], and explain how it results in TCP backoff problem.

Figure 2(a) demonstrates the procedure of VNSnap
distributed snapshot. Although VNSnap exploits the VI-
OLIN [12] switch to execute the coordinated protocol,
we treat V M1 as the coordinator for clarity. Upon dis-
tributed snapshot, the coordinator, i.e., V M1, will send
SNAPSHOT command to V M2, and then create the snap-
shot of V M1 itself. VNSnap leverages live migration to

iteratively save the dirtied pages into stable storage or re-
served memory region until some requirements are satis-
fied, such as the amount of dirty pages are minor enough,
or the size cannot be further reduced even more iterations
are conducted. Then VNSnap suspends the VM, stores
the final dirty memory pages, saves other devices’ state
and creates the disk snapshot. After these steps, the snap-
shot of V M1 is over and V M1 is resumed. Upon receiving
the SNAPSHOT command from V M1, V M2 follows the
same procedure as V M1 to create its own snapshot. VN-
Snap drops the packets send from the post-snapshot VM
to pre-snapshot VM, to keep the global state consistent.

Take this tiny cluster which consists of two VMs as
an example, the distributed snapshot duration time is
from the start time of V M1 snapshot to the end time of
V M2 snapshot (suppose V M2 finishes snapshot later than
V M1), the TCP backoff duration is from the start of V M1
suspend to the end of V M2 suspend. The packets re-
sult in TCP backoff fall into three categories: 1) V M1
is suspended while V M2 is in live-snapshot, the packets
send from V M2 to V M1 will not arrive, as Arrow1 illus-
trates; 2) V M1 finishes snapshot and then turns into post-
snapshot state, but V M2 is before or during snapshot. In
this situation, packets send from V M1 will be dropped to
keep the consistent state of distributed snapshot. Arrow2
shows such a case. 3) V M1 is in post-snapshot, but V M2
is suspended, V M2 cannot receive the packets send from
V M1, as Arrow3 shows.

Based on the three types of packets, we can conclude
that two aspects affect the TCP backoff duration in dis-



tributed snapshot. One is the downtime of individual VM
snapshot; the longer downtime implies more lost packet-
s, thereby causing longer TCP backoff duration. Another
is the discrepancy of the snapshot completion times, as
the Arrow2 illustrates, the packets send from V M1 which
has finished snapshot ahead will be dropped until V M2
completes the snapshot.

According to the above analysis, the VNSnap dis-
tributed snapshot method has three drawbacks: First, the
pre-copy based live migration method need to iterative-
ly save the dirtied pages, thus the snapshot downtime
is directly related to the workloads inside the VM and
I/O bandwidth; it may last seconds in memory intensive
scenarios [26]. Second, VNSnap proposes a VNSnap-
memory method to reduce the TCP backoff duration, it
saves the memory state into a reserved memory region
whose size is the same to the VM memory size; this
is wasteful and impractical in the IaaS platform which
aims to maximize resource utilization. Third, the snap-
shot duration time is proportional to the memory size and
workload, therefore the discrepancy of snapshot comple-
tion times would be large for VMs with various memory
sizes, further leads to long TCP backoff duration. Even
for the VMs with identical memory size and same appli-
cations, the snapshot completion times are still various
owing to the parallel disk I/O for saving large amount of
memory pages. Besides, the experimental results in VN-
Snap [18] also show this live migration based snapshot
method brings seconds of TCP backoff duration.

3 Design of HotSnap

The design of HotSnap includes a new individual VM
snapshot method and a coordinated non-block snapshot
protocol. We firstly describe the design of the HotSnap
method, then introduce the procedure of HotSnap for in-
dividual VM, and lastly describe the coordinated snap-
shot protocol to acquire a global consistent state of the
virtual machine cluster.

3.1 Overview of HotSnap

Figure 2(b) illustrates our HotSnap approach. Differen-
t from VNSnap which suspends the VM at the end of
the snapshot, HotSnap suspends the VM once receiving
the SNAPSHOT command, takes a transient snapshot of
VM and then resumes the VM. The full snapshot, which
records the entire memory state, will be completed dur-
ing the subsequent execution. Note that the VM actu-
ally turns to post-snapshot state after transient snapshot
is over. In this approach, the TCP backoff duration is
from the start of V M1 transient snapshot to the end of
V M2 transient snapshot, and the entire distributed snap-

shot duration starts from the start of V M1 transient snap-
shot to the end of V M2 full snapshot.

In HotSnap approach, we suspend the VM and create
the transient snapshot in milliseconds, thus the down-
time during individual VM snapshot would be minor.
Besides, in the nowadays IaaS platform or data center
which are always configured with high bandwidth and
low latency network, the round trip time is always less
than 1ms, so the VMs can receive the SNAPSHOT com-
mand and then start to create snapshot almost simultane-
ously. As a result, the transient snapshot of VMs can s-
tart almost simultaneously and finish in a very short time,
consequently minimizing the TCP backoff duration.

The individual VM snapshot combined of transient s-
napshot and full snapshot, as well as the coordinated pro-
tocol are two key issues to create the hot distributed s-
napshot, and will be described in detail in the following
parts.

3.2 Individual VM Snapshot

A VM snapshot is a point-in-time image of a virtual ma-
chine state; it consists of memory state, disk state and
devices’ states such as CPU state, network state, etc. Our
snapshot consists of two parts, one is a transient snapshot
which contains the devices state, disk state and metadata
of memory state; another is full snapshot which actually
records the memory state. We divide the individual VM
snapshot procedure into three steps as shown in Figure 3.

Step 1, Suspend VM and Create Transient Snap-
shot. We suspend the VM, store the devices state,
set write-protect flag to each memory page, create two
bitmaps to index the memory state and disk state, and
create a new null disk file. We adopt the redirect-on-
write method to create disk snapshot, therefore the disk
snapshot is completed after the bitmap and disk file are
created. This step only involves lightweight operations,
i.e., bitmap creation, flag setting and device state saving,
thus bringing only a few dozens of milliseconds down-
time.

Step 2, Resume VM and Create Full Snapshot. We
resume the VM to keep the Guest OS and applications
running during full snapshot. The running applications
will issue disk writes as well as dirty memory pages dur-
ing fault-free execution. For the disk write operation, the
new content will be redirected to a new block in the new
disk file by the iROW block driver [23]. For the write
operation on one memory page which is write-protected,
page fault will be caught in the VMM layer. HotSnap for
handling page fault will block the memory write opera-
tion, store the original page content into the snapshot file,
remove the write-protect flag, and then allow the guest to
continue to write the new content into the page. Mean-
while, a thread is activated to save memory pages ac-
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Figure 3: Steps of individual VM snapshot.

tively in background. The copy-on-write based memory
snapshot only saves each memory page once and thus
keeps the memory snapshot size to be the same to the
VM memory size.

Step 3, Snapshot Completion. After all the memory
pages are stored into the stable storage, the snapshot pro-
cess is completed. In the end, we clear the bitmap, and
stop the background thread.

3.3 Global Coordinated Non-block Snap-
shot Protocol

We design a global coordinated non-block snapshot pro-
tocol to coordinate the individual VM snapshot process-
es. Unlike Emulab [12] which synchronizes the clocks of
all VMs to ensure these VMs are suspended for snapshot
simultaneously, we deploy VMs on high bandwidth and
low latency network so that the VMs can receive the mes-
sage and start the snapshot at the same time. It is worth
noting that Emulab’s clock synchronization protocol can
be utilized to extend the scope of HotSnap.

The pre-snapshot, live-snapshot and post-snapshot are
both running state of individual VM, but they need to
be distinguished from the view of VMC distributed s-
napshot for consistency requirement. Note that VNSnap
suspends VM at the end of snapshot, so the live-snapshot
can be regarded as pre-snapshot. Similarly, in HotSnap
which suspends VM at the start, we consider the live-
snapshot as post-snapshot, i.e., the state after transient s-
napshot. We leverage the message coloring [21] method
to achieve the state distinction in the coordinated pro-
tocol, that is, we piggyback the white flag to the pack-
et which is send from the VM in pre-snapshot state and
represent the packets from the post-snapshot VM with
red flag. If one pre-snapshot VM receives a packet pig-
gybacked with a red flag, it will create its own snapshot
first, and then receive and handle the packet.

running
Full 

snapshot
Transient 
snapshot

Initiator Peer VM Peer VMs...SNAPSHOT

Figure 4: Global distributed snapshot protocol of Hot-
Snap.

There exist two roles in HotSnap system: initiator and
peer. Unlike the VNSnap [18] or Emulab [12] system-
s that use separate modules such as VIOLIN switch or
XenBus as the initiator, each VM in HotSnap can be ei-
ther the initiator or a peer. And there is only one initia-
tor during a failure-free VMC snapshot process. Each
peer records its snapshot states including transient snap-
shot state and full snapshot state. The initiator not only
records the snapshot states, but also maintains these s-
tates of the whole VMC distributed snapshot. Figure 4
illustrates how the coordinated protocol works, the ini-
tiator after receiving the SNAPSHOT command from the
user or administrator, will first broadcast this command
to all peers, and then takes its own transient snapshot.
The peers will trigger the snapshot process when receiv-
ing two kinds of packets, the SNAPSHOT message from
the initiator, or the packet piggybacked with red flag.
Once finishing the transient snapshot, the peer VM will
send a TRANSIENT SNAP FIN message to the initia-
tor, and color the transmitted packets with the red flag
to imply the peer is in post-snapshot state. After finish-
ing the snapshot itself and receiving all peers’ TRAN-
SIENT SNAP FIN messages, the initiator will broadcast
the ALL TRANSIENT SNAP FIN message to all peer
VMs to notify the completion of transient snapshot of
the whole VMC. The peers who receive this message
will cancel packet coloring and reset the packet with the
white flag immediately. The distributed snapshot proce-
dure continues until the initiator receives all VMs’ FUL-
L SNAP FIN message which marks the completion of
the full snapshot. The initiator will finally broadcast AL-
L FULL SNAP FIN message to all peer VMs, to declare
the completion of the distributed snapshot of the VMC.



QEMU Mode

HotSnap

Hardware 

Disk Snapshot 
Module

KVM Mode

VMC Snapshot 
Manager

VM Snapshot 
Manager

Packet 
Mediator

iROW
Format

Memory Snapshot Module

iROWBlock 
Driver

DMA Write 
Handler

Background 
Copy Thread

Write Fault 
Handler

KVM Write 
Handler

VNSnap

Stop and 
Copy

KVM Write 
Interceptor

Write Fault 
Trapper

ioctl

Figure 5: HotSnap system architecture.

4 System Implementation

This section presents the implementation issues in Hot-
Snap. We start by describing the overall architecture, and
then go on sub-level details and optimizations.

4.1 System architecture
We implement HotSnap on qemu-kvm-0.12.5 with Linux
kernel 2.6.32.5-amd64. The system architecture is illus-
trated in Figure 5. HotSnap consists of two main compo-
nents: the coordinated snapshot protocol component and
VM snapshot component.

The coordinated protocol component includes the
VMC Snapshot Manager and Packet Mediator. The VM-
C Snapshot Manager acts as the initiator during the dis-
tributed snapshot; it will firstly broadcast the SNAP-
SHOT command to other VMs, and then notify the VM
Snapshot Manager to take the snapshot of VM itself.
Packet Mediator has two functions: change the color
of the sending packets according to the VM snapshot
progress; decide whether or not to accept a packet by
comparing packet’s color with its own state.

VM Snapshot Manager is in charge of taking the
individual VM snapshot; it supports three snapshot
schemas, the HotSnap method, the Stop-and-copy snap-
shot method which is default adopted in QEMU/KVM,
and the VNSnap-disk snapshot proposed in VNSnap [18]
based on the pre-copy live migration in QEMU. In our
HotSnap system, VM Snapshot Manager calls the Disk
Snapshot Module to create the disk snapshot in the tran-
sient snapshot procedure, and exploits the Memory S-
napshot Module to save the memory state during both
transient snapshot and full snapshot. The details about
Disk Snapshot Module can be referred in our iROW work

[23], thus are omitted in this paper.

4.2 COW Based Memory Snapshot

We create the memory snapshot in the copy-on-write
(COW) manner. Writing large amount of memory state
into a file within the kernel is terrible and may crash the
system, so we save the memory state in user space when
taking the snapshot. However, in the QEMU/KVM plat-
form, the guest memory pages will be written by not only
the guest OS or applications inside, but also by the sim-
ulated DMA devices and the KVM module. In the fol-
lowing, we will describe how we save the entire memory
state in detail.

Guest Write Handler: During the
transient snapshot, we call the function
cpu physical memory set dirty tracking in QEMU
to set the write protect flag for each guest physical
memory page, so that the VMM layer can trap the write
page fault triggered by the running applications or the
guest OS. Once page fault occurs, the execution of Guest
OS will hang and exit to KVM module. Then we handle
the page fault in the function handle ept violation,
which is defined to handle memory access violation for
the specific CPU with the Extended Page Tables (EPT)
feature. If the trapped page fault is owing to be write
protected, we record the guest frame number (gfn) of the
page, set the exit reason as EXIT REASON HOTSNAP,
and then exit to QEMU for handling the exception. The
QEMU component when encountering the exit whose
reason is EXIT REASON HOTSNAP, will save the
memory page indexed by gfn into the snapshot file,
notify KVM to remove the write protect flag of the page,
and then issue the function kvm run to activate the VM.
Afterwards, the resumed VM will continue to run and
write that memory page without triggering page fault
again. In addition, each page fault incurs exit from Guest
to KVM kernel then to QEMU user space, as well as
entry in the opposite direction, resulting in performance
loss. Thus, we save dozens of memory pages and remove
their associated write protect flags when handling one
page fault. This can benefit from the feature of memory
locality, thereby reducing the frequency of page fault
and occurrences of context switch between Guest OS
and VMM layer.

DMA Write Handler: DMA is a widely-used tech-
nology to accelerate the transfer speed of I/O related de-
vices. QEMU also simulate the DMA schema for IDE
driver and virtio network driver in qemu-kvm-0.12.5.
In their implementation, a reserved memory region is
mapped between the guest and the simulated DMA driv-
er. For read or write operations, the driver just map the
data to or from the guest directly instead of I/O opera-
tions. This method dirties the guest memory pages with-



out triggering the page fault and thus cannot be caught
in the Guest Write Handler way. Therefore, we intercept
the DMA write operations directly in QEMU. Take disk
I/O as an example, the function dma bdrv cb in QEMU
implements the DMA write operations, it first fetches the
address and length of the data to be written from the s-
catter/gather list, maps this address to the guest physi-
cal page by the function cpu physical memory map and
finally writes the data into the guest disk file. There-
fore, we intercept the write operation in the function d-
ma bdrv cb, save the original memory page content, and
then resume the execution of DMA write. One thing to
be noted is that only the disk device and network de-
vice in qemu-kvm-0.12.5 support the DMA schema, but
the newer versions such as qemu-kvm-1.4.0 add the D-
MA feature to more devices including disk device, sound
card and video card. However, the methodologies are the
same in dealing with DMA interception.

KVM Write Handler: The KVM kernel set val-
ue to the registers such as MSR for task switch opera-
tions, key-board operations, thus causing the guest mem-
ory pages dirtied. Similar to DMA Write Hanlder, we
intercept KVM write in the function kvm write guest
which is implemented in KVM to assign value to cer-
tain address space. The KVM kernel always repeated-
ly writes the same memory pages and the page coun-
t is only a little, so we first store the intercepted pages
into a kernel buffer without blocking the execution of
kvm write guest, then copy these pages in buffer to the
user space asynchronously. In this way, all the memory
pages dirtied by KVM will be saved to stable storage in
the user space.

Background Copy: To accelerate creating the memo-
ry snapshot, a background copy thread is issued to store
the guest memory pages concurrently. It traverses all the
guest memory pages and saves the pages that have not
been saved by the other three memory snapshot manners.
Since all these four kinds of memory snapshot manners
may save the same page simultaneously, a bitmap is re-
served for indexing whether the page is saved or not, to
guarantee completeness and consistency of the memory
state. The bitmap is shared between QEMU and KVM.
All the four manners should first store the page, then
set the associated bit value and remove the write-protect
flag. Or else, there will be concurrency bugs. Let us con-
sider an improper case that set bit and removes flag first.
Upon saving a page, the Background copy thread firstly
set the associated bit and removes the write-protect flag;
however, before the thread saving the page content, the
Guest OS dirties this page since write protect flag has
been removed, causing the thread to save the false page
content. Thus, when taking memory snapshot, the inter-
ceptions on DMA write and KVM write will first check
the associated bit value of the page about to write, save

the original page if the bit value is not set, or ignore oth-
erwise. The Guest Write Handler also takes the same
procedure, for the bit value has been set, it allows the
guest to continue running without exit to QEMU.

4.3 Log and Resend On-the-fly Packets

Dropping the on-the-fly packets send from post-snapshot
VM to pre-snapshot VM during TCP backoff duration is
a simple way to obtain the global consistent state. How-
ever, this way will increase the TCP backoff duration, the
reason is as follows: TCP or other upper level protocol-
s will retransmit the packets that are not acknowledged
in a certain time named Retransmit Timeout (RTO), to
achieve correctness and reliability of message passing.
That means, if the the packets are lost, these reliable pro-
tocols will delay resending the packet until timeout. The
default RTO value is 3 seconds in Linux 2.6.32 kernel,
it is always larger than the TCP backoff duration which
lasts tens of milliseconds in HotSnap system (in Section
5.3). Thus, if the packets are dropped, the actual network
interruption time will be the RTO value at the minimum,
i.e., 3 seconds. Worse still, the RTO value will increase
manyfold until receiving the acknowledgement.

Instead of dropping the packets directly, the Packet
Mediator component intercepts the read/write operations
issued by the tap device which is connected to the virtual
network interface card (VNIC) of VM, logs the on-the-
fly packets send from the post-snapshot VM to the pre-
snapshot VM, and then stores the packets into a buffer.
After completing the transient snapshot, the Packet Me-
diator will first fetch the packets from the buffer, send
them to the VNIC of the VM, and finally resume the nor-
mal network communication.

5 Experimental Evaluation

We apply several application benchmarks to evaluate
HotSnap. We begin by illustrating the results for cre-
ating snapshot of individual VM, and then compare the
TCP backoff duration between three snapshot modes un-
der various VMC configurations, lastly we characterize
the impacts on performance of applications in VMC.

5.1 Experimental Setup

We conduct the experiments on four physical server-
s, each configured with 8-way quad-core Intel Xeon
2.4GHz processors, 48GB DDR memory, and Intel
82576 Gigabit network interface card. The servers are
connected via switched Gigabit Ethernet. We configure
2GB memory for the virtual machines unless specified
otherwise. The operating system on physical servers and



virtual machines is debian6.0 with 2.6.32-5-amd64 ker-
nel. We use qemu-kvm-0.12.5 as the virtual machine
manager. The workloads inside the VMs includes:

Idle workload means the VM does nothing except the
tasks of OS self after boot up.

Kernel Compilation represents a development work-
load involves memory and disk I/O operations. We com-
pile the Linux 2.6.32 kernel along with all modules.

Matrix Multiplication multiplies two randomly gen-
erated square matrices, this workload is both memory
and CPU intensive.

DBench [4] is a well known benchmark tool to evalu-
ate the file system, it generates I/O workloads.

Memcached [8] is an in-memory key-value store for
small chunks of data, the memcached server when re-
ceiving a request containing the key, will reply with the
value. We set memcached server in one VM, and config-
ure mcblaster [7] as client in another VM to fill the data
in the memcached instance and then randomly request
the data from the memcached server.

Distcc [5] is a compilation tool that distributes the
compilation tasks across the VMs connected in the VM-
C. It contains one Distcc client and several servers. The
client distributes the tasks to servers, and the servers af-
ter receiving the task will handle the task and then return
the result to the client. This workload is memory and
network intensive. We use Distcc to compile the Linux
2.6.32 kernel with all modules in the VMC.

BitTorrent [2] is a file transferring system, the peers
connect to each other directly to send and receive por-
tions of file. Different from distcc that is centralized,
BitTorrent is peer-to-peer in nature.

We compare the three snapshot methods, all these
methods save the snapshot file in local host.

Stop-and-copy. The default snapshot method used in
QEMU/KVM, it suspends the VM while creating snap-
shot.

VNSnap-disk. We implement the VNSnap-disk snap-
shot method based on live migration in QEMU/KVM,
save the memory state into the stable storage directly.

HotSnap. Our snapshot method that suspends the VM
first, then create the transient snapshot and full snapshot.

QEMU/KVM optimizes taking snapshot by compress-
ing the zero pages with one byte, thus reduce the amount
of saved state. This incurs unfairness in experiments, the
reason is, the VM after long time running may dirty more
zero pages, and experience longer snapshot duration than
the new booted VM which contains large number of zero
pages, thus leading to unpredictable TCP backoff dura-
tion between the two VMs. As a result, we abandon the
compression codes, save the whole zero page instead of
only one byte to eliminate the impact of zero pages.

5.2 Snapshot of Individual VM

We start by verifying the correctness of saved snapshot
state for individual VM, and then evaluate the snapshot
metrics including downtime, duration and snapshot file
size. When calculating the snapshot file size, we count
all devices’ state, memory state and bitmaps, as well as
the disk snapshot which is either a bitmap file in HotSnap
or multi-level tree file in the other two modes.

Correctness: Correctness means the snapshot correct-
ly records all the state of the running VM, so that the VM
can rollback to the snapshot time point and continue to
run successfully. To verify the correctness of HotSnap,
we compile the Linux kernel and take several snapshots
during normal execution. We pick the snapshots and con-
tinue running from these snapshot points, the compiled
kernel and modules can execute successfully. Besides,
we take snapshot in the Stop-and-copy manner, and then
create the HotSnap snapshot. The content of the two s-
napshots are identical and thus demonstrate the correct-
ness of our system.

Snapshot Metrics: We run Kernel Compilation, Ma-
trix Multiplication, Memcached and Dbench application-
s to evaluate the performance when taking snapshot of in-
dividual VM. We compare HotSnap with Stop-and-copy
and VNSnap-disk in terms of snapshot duration, down-
time and snapshot file size. As shown in Table 1, the VM
only experiences about 35 milliseconds downtime dur-
ing HotSnap, because this step is to create the transien-
t snapshot which only involves lightweight operations.
The downtime in VNSnap-disk is various, e.g., 381ms
for kernel compilation and 36.8ms when idle, it is re-
lated to the workload and I/O bandwidth. HotSnap also
achieves shorter snapshot duration and smaller file size
than VNSnap-disk. This is because HotSnap saves only
one copy for each memory page, while the live migration
based VNSnap-disk needs to iteratively save dirty mem-
ory pages to snapshot file. The Stop-and-copy method,
obviously, incurs dozens of seconds downtime. The
bitmap file size is only a little, e.g., 128KBytes to index
4GBytes memory of VM, so that the snapshot file size in
HotSnap and Stop-and-copy are both about 2.02GBytes.

5.3 Snapshot of VMC

In this section, we evaluate HotSnap in the virtual ma-
chine cluster and focus on the TCP backoff duration.
We compare the TCP backoff duration in three snapshot
modes, while changing the VMC configurations. The
VMC configurations include: VMC under various work-
load, VMC of different scales, VMC with different VM
memory size and disk size, and VMC mixed of VMs with
different memory size.

We will first illustrate the details on snapshot progress
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Figure 6: Comparison of TCP backoff details.

that lead to TCP backoff. We build a VMC with 16 VMs,
with Distcc running inside. When creating the individu-
al VM snapshot, we record the snapshot start time, VM
suspend start time, VM suspend end time and snapshot
completion time. The suspend end time equals snapshot
completion time in VNSnap-disk snapshot method be-
cause VNSnap-disk suspends the VM at the end of s-
napshot, the TCP backoff duration between two VMs is
from the first VM suspend start time to the last VM snap-
shot completion time. The snapshot start time is identical
to the suspend start time in HotSnap because HotSnap
suspends the VM at the start of snapshot, and the TCP
backoff duration is from the suspend start time to the last
suspend end time. Figure 6 shows the detailed results of
16 individual VM snapshot progresses in the VMC. The
Stop-and-copy downtime last dozens or even hundreds
of seconds, thus are not given in the figure.

We can see from Figure 6(a) that the duration from s-
napshot start to suspend end of VMs are almost identical
and are minor, and the average suspend duration (down-
time) is 116ms. The maximum TCP backoff duration
between two VMs is 273ms. For VNSnap-disk snapshot
method shown in Figure 6(b), although the snapshots s-

tart simultaneously, their suspend start time are various
owing to iteratively saving the dirtied memory pages.
The suspend duration are also different, ranges from tens
of milliseconds to hundreds of milliseconds. The V M9
which is the Distcc client even suffers from 2.03 second-
s downtime, because it undertakes the heaviest task and
generates large amount of memory during final transfer.
VNSnap-disk brings 359ms VM downtime in average,
only a little more than that of HotSnap. However, due to
the discrepancy of snapshot completion times, the TCP
backoff duration is much longer, e.g., the maximum val-
ue is 15.2 seconds between V M1 and V M9. This result
suggests that the TCP backoff in VNSnap-disk snapshot
method is much severe in the master/slave style distribut-
ed applications. The master always suffers from heavier
workloads, costs longer time to finish the snapshot than
the slaves, resulting in longer network interruption be-
tween master and slaves. However, the HotSnap method
can effectively avoid this short-board affect because the
downtime to create the transient snapshot is regardless
of the workload, and lasts only tens of milliseconds.

The TCP backoff duration between two VMs is easy
to acquire, but the backoff duration for the whole VMC

Metrics Duration(s) Downtime(ms) Snapshot Size(GBytes)

Benchmarks Stop-
and-copy

VNSnap-
disk

HotSnap Stop-
and-copy

VNSnap-
disk

HotSnap Stop-
and-copy

VNSnap-
disk

HotSnap

Idle 50.64 51.66 51.57 50640 36.83 31.88 2.02 2.04 2.02
Compilation 52.50 61.11 51.96 52500 381.72 34.16 2.02 2.38 2.02
Matrix Mul-
tiplication

49.34 51.75 52.31 49340 55.73 35.93 2.02 2.19 2.02

Memcached 53.09 69.43 54.72 53090 150.85 33.80 2.02 2.41 2.02
Dbench 56.93 60.76 50.18 56930 79.36 39.36 2.02 2.17 2.02

Table 1: Comparison of individual VM snapshot techniques.
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Figure 7: TCP backoff in VMC under various workloads.

is hard to depict, we approximate the value by the aver-
age of TCP backoff durations between each two VMs in
the VMC. Take Figure 6 as an example, the VMC TCP
backoff duration are 137ms and 8.6s for HotSnap and
VNSnap-disk methods respectively. In the following, we
will compare the results of VMC TCP backoff duration
under different VMC configurations in Figures 7-10. The
VMC TCP backoff duration is log transformed on y-axis
for clear comparisons:

VMC under various workloads. In this configura-
tion, we build the VMC with 16 VMs, which are de-
ployed evenly on four physical servers. The workloads
are Distcc, BitTorrent, MapReduce and MySQL Clus-
ter. For BitTorrent, we set one tracker in one VM, set
two VMs as clients to download files from other VMs as
seeds. We set up the Hadoop MapReduce [6] to count
the key words in the short messages data set from Chi-
na unicom, which contains over 600 million messages.
Besides, we use the MySQL Cluster [9] to build a dis-
tributed database across the VMs, we configure one VM
as management node, 13 VMs as database nodes, and ex-
ploit Sysbench [10] set up in two VMs to query the data
in parallel. Figure 7 compares the VMC TCP backof-
f duration under different snapshot modes. As expected,
the HotSnap distributed snapshot only suffers from about
100 milliseconds backoff duration under all the work-
loads, while the VNSnap-disk method incurs as many as
7 seconds in the MapReduce and MySQLCluster work-
loads, owing to the different snapshot completion times
among VMs.

VMC of different scales. We set up the VMC with
8, 16, 24 and 32 VMs with Distcc running inside. Same
as above, the VMs are deployed evenly on four physical
servers. Figure 8 shows that the VMC TCP backoff dura-
tion in HotSnap method keeps almost constant, i.e., less
than 200ms regardless of the number of VMs in the VM-
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Figure 8: TCP backoff in VMC with different scales.

C. That’s because the transient snapshot in HotSnap only
save a few megabytes data, involves CPU state, bitmap
files of disk and memory state. The VMC TCP backoff
duration in VNSnap-disk and Stop-and-copy rises with
the increase of VM number; the reason is the parallel ex-
ecution of writing more large files.

VMC with increased VM memory and disk size.
We configure the VMC with 16 VMs under the Distc-
c workload. Figure 9 compares the VMC TCP back-
off duration while increasing the VM memory size and
disk size. The VMC TCP backoff duration in all the
three modes increase while increasing the VM memo-
ry size and disk size. The increase in HotSnap method
is because HotSnap need to reserve larger bitmap files
for larger disk and memory size, and more operations to
set write protect flags to memory pages. The increase
in Figure 9(a) in VNSnap-disk may come from two as-
pects: the first is the parallel execution of writing larger
files, which is also the reason for the increase in the Stop-
and-copy method; the second is owing to longer time to
save more memory pages, which will further generate
more dirtied pages during iteration time. Because the
disk snapshot is created in VM suspend phase, and dif-
ferent disk size affects the VM downtime, so we show
the downtime instead of VMC TCP backoff duration in
Figure 9(b). As estimated, the redirect-on-write based s-
napshot method cost only tens of milliseconds, achieves
the reduction by more than 20x compared to the other t-
wo modes. Besides, the VNSnap-disk downtime reaches
several seconds, and is proportional to the VM disk size,
because most of the downtime is consumed to index the
disk blocks in the multi-level tree structure. The Stop-
and-copy takes the same method to create disk snapshot,
thus incurs the same downtime to VNSnap-disk.

VMC mixed of VMs with different memory size. In
this VMC configuration, we set up the VMC with two
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Figure 10: TCP backoff in VMC mixed of VMs with
different memory size.

VMs of different memory size. As illustrated in Figure
10, compared to the HotSnap TCP backoff duration that
keeps almost constant regardless of the discrepancy of
VM memory size, the TCP backoff duration of VNSnap-
disk increases proportionally to the raised discrepancy
between memory size, i.e., every 1G memory difference
will incur additional 27 seconds backoff duration. As
expected, the VMC which consists of 1G memory VM
and 4G memory VM obtains the largest backoff duration.
The Stop-and-copy method, on the other hand, increases
with the increasing memory size of VMs, this is easily
understand because more time will be consumed to write
larger files into the snapshot file.

5.4 Performance Impact on Individual VM

In the above experiments, we save the whole zero page
instead of only one byte to avoid the impacts of zero
pages. However, saving multiple large snapshot files si-
multaneously during distributed snapshot will degrade
performance seriously, and even cause write operation
timeout for I/O intensive applications. We consider the
optimization as our future work, but in this paper, we
simply resume the zero page compression mode to re-
duce the saved page count during snapshot.

As stated in the previous section, during the full snap-
shot step, we trap the write page fault in KVM and turn to
QEMU to handle the write fault, so that the memory op-
erations of Guest OS and user applications are affected.
Besides, we intercept the DMA write operations, which
may affect the guest I/O speed. So we first give the s-
tatistic on the four memory page saving manners during
HotSnap, and then evaluate the performance on applica-
tions.

Page count of different manners in HotSnap. Hot-
Snap saves the memory pages in four manners: Guest
Write Handler, DMA Write Handler, KVM Write Han-
dler and Background Copy. The saved page number of
these four types under various workloads are listed in Ta-
ble 2. The Guest Write pages always account more than
that of DMA Write and KVM Write, but the amount is
still minor even under memory intensive workloads, e.g.,
2.5% of all memory pages under Memcached. This is
possible because HotSnap saves dozens of neighbour-
ing pages when handling one page fault and thus it ben-
efits from the memory locality feature. Handling one
Guest Write page cost about 60us, including the time
to trap write page fault, exit to QEMU to save memo-
ry pages, remove write protect flag and resume the ex-
ecution. As a result, the total cost incurred by saving
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Figure 11: Matrix multiplication calculation time.

page in Guest Write is affordable. DMA Write opera-
tions and KVM Write operations always repeatedly ac-
cess the same memory pages, therefore the count is mi-
nor. Besides, the interception on DMA write and KVM
write lasts about 12us, making the impact can be negli-
gible.

Workloads Background
Copy

Guest
Write

DMA
Write

KVM
Write

Idle 528301 133 44 2
Compilation 524506 3912 59 3
Matrix Mul-
tiplication

520496 7916 65 3

Memcached 514814 13270 394 2
Dbench 526831 987 660 2

Table 2: Count of four page types during HotSnap.

Matrix multiplication time. Matrix Multiplication
involves large amount of memory and CPU operations.
We calculate the multiplication of two matrices while
increasing the matrix order, and obtain the calculation
time during No-Snapshot (i.e., normal execution), Hot-
Snap and VNSnap-disk snapshot. Figure 11 compares
the results of HotSnap and VNSnap-disk to the com-
pletion time of No-Snapshot as baseline. Both the two
live snapshot methods bring less than 5% additional time
to finish the computation, implying no obvious perfor-
mance penalty during distributed snapshot for this kind
of workload.

Kernel compilation time. Kernel compilation in-
volves both memory operations and disk IO opera-
tions, we compile Linux-2.6.32.5 kernel with all mod-
ules during continuous VM snapshot. Figure 12 com-
pares the compilation duration in No-Snapshot, Hot-
Snap and VNSnap-disk modes. The time during Hot-
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Figure 12: Kernel compilation time.

Snap and VNSnap-disk distributed snapshot are almost
equal, and both consume about 20% more time to com-
pile the kernel. The increase is owing to the CPU uti-
lization and I/O bandwidth consumed by the VM snap-
shot. The 20% reduction maybe unacceptable in many
performance-critical systems, and we leave the perfor-
mance optimization as our future work.

5.5 Performance Impact on VMC

We first build the VMC with different number of vir-
tual machines, and run Distcc to compare the comple-
tion time of normal execution, HotSnap distributed snap-
shot and VNSnap-disk snapshot. Then we set the VMC
with 16 virtual machines running on four physical server-
s evenly, and install BitTorrent to evaluate the download
speed during distributed snapshot.

Distcc compilation time. Distcc client distributes the
compilation task to servers, if it loses connection with
one server, the client will do the task in local; and the
client can continue to distribute the task once the serv-
er is connected again. Figure 13 depicts the compila-
tion time during continuous distributed snapshot while
increasing the number of VMs in the VMC. Compared to
the No-Snapshot mode, the compilation duration during
HotSnap distributed snapshot increases by about 20%.
The increase are mainly due to the snapshot overhead
such as I/O operations and CPU utilization, the similar
results are also illustrated in Figure 12. The duration
during VNSnap-disk is much longer, it cost about 7%
to 10% more time to finish compilation than that of Hot-
Snap. Obviously, this is due to the TCP backoff which
incurs network interruption between client and servers.

BitTorrent download speed. We set up the BitTor-
rent to evaluate the network performance loss incurred
during distributed snapshot. We build the tracker on
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Figure 13: Distcc compilation time.

one VM, treat one VM as the client to download a large
video file from other VMs as seeds, and record the down-
load speed every 100 milliseconds. Note that the prac-
tical download speed varies significantly even in adja-
cent epoches, we average the speed by twenty samples.
Figure 14 compares the download speed between nor-
mal execution and distributed snapshot. The download
speed reduces from 33.2MBytes/sec during normal run-
ning to 22.7MBytes/sec when taking snapshot. The d-
ifference of impact between HotSnap and VNSnap-disk
is also illustrated in the figure. HotSnap incurs a sharp
decrease at about the 6th seconds, which is actually the
distributed snapshot downtime to create the transient s-
napshot. Then the download speed will reach about
22.7MBytes/sec and keep the speed until the 55th sec-
ond. From this time point, many VMs finish the ful-
l snapshot and resume to normal execution, so that the
download speed will increase and finally reach the nor-
mal download speed, i.e., about 33.2MBytes/sec. The
download speed during VNSnap-disk distributed snap-
shot shows opposite result from the 55th second, it de-
creases and reaches 0MBytes/sec at the 68th second. The
reason is that the BitTorrent client experiences about 65
seconds to finish the snapshot, and will not receive the
packets from seed VMs that finish the snapshot ahead,
therefore decrease the download speed. After the client
resumes the execution from the 71st second, the down-
load speed also returns to normal.

6 Related Work

Distributed snapshot has been widely studied in the past
thirty years, and many techniques have been proposed
to create snapshot for distributed systems. The earlier
works mainly focus on designing the snapshot protocol
between the peers to maintain a global consistent state.
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Chandy and Lamport [13] assume the message channel
is reliable and FIFO, and propose the coordinated proto-
col. Lai [21] proposes the message coloring based pro-
tocol to achieve consistency for non-FIFO channel. Kim
[19] blocks the peer running until all the distributed snap-
shot finishes to reserve the consistent state. In contrast
to optimize the snapshot protocol, we implement the co-
ordinated, non-blocking protocol in the high bandwidth
and low latency local area network, the protocol is sim-
ple and suitable for taking the distributed snapshot in the
virtualized environments.

Another key aspect of distributed snapshot is the snap-
shot technology. Copy-on-write, redirect-on-write, split
mirror are common methods to save the system state,
and are implemented on kernel level [11], library level
[24, 17, 25] or application level [3, 16] to create the s-
napshot. However, these methods require modification
of the OS kernel or applications, thus is unacceptable in
many scenarios.

The virtualization technology encapsulates the whole
application as well as the necessary resources; it con-
tributes to create the snapshot in an transparent manner.
Emulab [12] leverages live migration technique to enable
taking snapshots of the virtual machine network. By syn-
chronizing clocks across the network, Emulab suspends
all nodes for snapshot near simultaneously, and imple-
ments a coordinated, distributed snapshot. The synchro-
nization will block the execution of the VMs, thus inter-
fere with the applications running in the VMs. Besides,
Emulab requires modifications to the Guest OS, and is
hard to support legacy and commodity OS. VNSnap [18]
also leverages Xen live migration [14] function to min-
imize system downtime when taking VMN snapshots.
Unlike Emulab, VNSnap employs non-blocking coordi-
nation protocols without blocking VMs, and VNSnap re-
quires no modification to the guest OS. Our HotSnap pro-
posal shares a similar manner to VNSnap, but we design
a transient snapshot manner to suspend the VM first and
then create the full snapshot, which reduces the discrep-
ancy of snapshot completion time. Besides, we log and
resend the packets send from post-snapshot VM to pre-



snapshot VM instead of dropping them which is adopted
by VNSnap. Both these two technologies achieve the no-
table reduction in the TCP backoff duration. Moreover,
we treat one VM as the initiator to avoid setting up a
customized module, which makes HotSnap to be easily
portable to other virtualized environments.

7 Conclusions

This paper presents a distributed snapshot system Hot-
Snap, which enables taking hot snapshot of virtual ma-
chine cluster without blocking the normal execution of
VMs. To mitigate TCP backoff problem and minimize
packets loss during snapshots, we propose a transient
VM snapshot approach capable of taking individual VM
snapshot almost instantaneously, which greatly reduces
the discrepancy of snapshot completion times. We have
implemented HotSnap on QEMU/KVM platform, and
conduct several experiments. The experimental results
illustrate the TCP backoff duration during HotSnap dis-
tributed snapshot is minor and almost constant regardless
of the workloads, VM memory size and different VM-
C configurations, thus demonstrate the effectiveness and
efficiency of HotSnap.

There still exists several limitations in HotSnap. First,
the newer QEMU version supports more DMA simu-
lators such as sound card and video card, implement-
ing DMA write interceptions for each simulated device
are fussy. Second, creating distributed snapshot involves
large amount of I/O operations, thus affect the I/O in-
tensive applications running insides the VMs. Therefore,
our ongoing works include designing an abstract layer
to intercept DMA write operations, scheduling the I/O
operations from Guest OS and HotSnap for application-
s’ performance requirements. We also plan to evaluate
HotSnap under real-world applications.
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A Global Consistent State

The virtual machine cluster is a message-passing system; there-
fore the global state of VMC to be saved consists of the indi-
vidual states of single VMs and the states of the communication
channels. The global consistent state requires: 1) if the state of
a process reflects a message receipt, then the state of the corre-
sponding sender much reflect sending this message; 2) A pack-
et can be in the sender, or flying in the channel, or is accepted
by the receiver, but cannot exist in two at the same time. Figure
15 illustrates a consistent and inconsistent state [15]. Figure
15(a) is consistent even the P1 do not receive m1, because m1
has been send from P0, and is travelling in the channel in this
case. On the other hand, Figure 15(b) describes an inconsis-
tent state, this is because m2 received by P2 has not been send
from P1 in this snapshot state. In such a case, P1 will resend

m2 after rollback to the inconsistent snapshot state, thus result
in fault state of P2. As a result, this kind of messages that send
from post-snapshot process to pre-snapshot process are always
dropped, or logged and then resend after snapshot is over.Rollback-Recovery Protocols in Message-Passing Systems 379

Fig. 2 . An example of a consistent and inconsistent
state.

state in Figure 2(b). Note that the consis-
tent state in Figure 2(a) shows message
m1 to have been sent but not yet received.
This state is consistent, because it repre-
sents a situation in which the message has
left the sender and is still traveling across
the network. On the other hand, the state
in Figure 2(b) is inconsistent because
process P2 is shown to have received m2
but the state of process P1 does not reflect
sending it. Such a state is impossible in
any failure-free, correct computation. In-
consistent states occur because of failures.
For example, the situation shown in part
(b) of Figure 2 may occur if process P1 fails
after sending message m2 to P2 and then
restarts at the state shown in the figure.

A fundamental goal of any rollback-
recovery protocol is to bring the system
into a consistent state when inconsisten-
cies occur because of a failure. The recon-
structed consistent state is not necessarily
one that has occurred before the failure. It
is sufficient that the reconstructed state
be one that could have occurred before the
failure in a failure-free, correct execution,
provided that it be consistent with the in-
teractions that the system had with the
outside world. We describe these interac-
tions next.

2.3. Interactions with the Outside World

A message-passing system often interacts
with the outside world to receive input
data or show the outcome of a computa-
tion. If a failure occurs, the outside world
cannot be relied on to roll back [Pausch
1988]. For example, a printer cannot roll
back the effects of printing a character,
and an automatic teller machine cannot
recover the money that it dispensed to a
customer. To simplify the presentation of

how rollback-recovery protocols interact
with the outside world, we model the latter
as a special process that interacts with the
rest of the system through message pass-
ing. This special process cannot fail, and it
cannot maintain state or participate in the
recovery protocol. Furthermore, since this
special process models irreversible effects
in the outside world, it cannot roll back.
We call this special process the “outside
world process” (OWP).

It is necessary that the outside world
perceive a consistent behavior of the sys-
tem despite failures. Thus, before send-
ing a message (output) to OWP, the sys-
tem must ensure that the state from which
the message is sent will be recovered de-
spite any future failure. This is commonly
called the output commit problem [Strom
and Yemini 1985]. Similarly, input mes-
sages that a system receives from the out-
side world may not be reproducible during
recovery, because it may not be possible
for OWP to regenerate them. Thus, recov-
ery protocols must arrange to save these
input messages so that they can be re-
trieved when needed for execution replay
after a failure. A common approach is to
save each input message on stable storage
before allowing the application program to
process it.

Rollback-recovery protocols, therefore,
must provide special treatment for inter-
actions with the outside world. There are
two metrics that express the impact of this
special treatment, namely the latency of
input/output and the resulting slowdown
of system’s execution during input/output.
The first metric represents the time it
takes for an output message to be released
to OWP after it has been issued by the sys-
tem, or the time it takes a process to con-
sume an input message after it has been
sent from OWP. The second metric repre-
sents the overhead that the system incurs
to ensure that its state will remain con-
sistent with the messages exchanged with
the OWP despite future failures.

2.4. In-Transit Messages

In Figure 2(a), the global state shows
that message m1 has been sent but not
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Figure 15: An example of consistent and inconsistent s-
tate. p stands for independent process, and m represents
the message.
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