
This paper is included in the Proceedings of the 
28th Large Installation System Administration Conference (LISA14).

November 9–14, 2014 • Seattle, WA

ISBN 978-1-931971-17-1

Open access to the 
Proceedings of the 28th Large Installation 

System Administration Conference (LISA14) 
is sponsored by USENIX

HotRestore: A Fast Restore System  
for Virtual Machine Cluster

Lei Cui, Jianxin Li, Tianyu Wo, Bo Li, Renyu Yang, Yingjie Cao,  
and Jinpeng Huai, Beihang University

https://www.usenix.org/conference/lisa14/conference-program/presentation/cui



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  1

HotRestore: A Fast Restore System for Virtual Machine Cluster

Lei Cui, Jianxin Li, Tianyu Wo, Bo Li, Renyu Yang, Yingjie Cao, Jinpeng Huai
State Key Laboratory of Software Development Environment

Beihang University, China
{cuilei, lijx, woty, libo, yangry, caoyj}@act.buaa.edu.cn {huaijp}@buaa.edu.cn

Abstract

A common way for virtual machine cluster (VMC) to
tolerate failures is to create distributed snapshot and then
restore from the snapshot upon failure. However, restor-
ing the whole VMC suffers from long restore latency due
to large snapshot files. Besides, different latencies would
lead to discrepancies in start time among the virtual ma-
chines. The prior started virtual machine (VM) thus can-
not communicate with the VM that is still restoring, con-
sequently leading to the TCP backoff problem.

In this paper, we present a novel restore approach
called HotRestore, which restores the VMC rapidly with-
out compromising performance. Firstly, HotRestore re-
stores a single VM through an elastic working set which
prefetches the working set in a scalable window size,
thereby reducing the restore latency. Second, HotRe-
store constructs the communication-induced restore de-
pendency graph, and then schedules the restore line to
mitigate the TCP backoff problem. Lastly, a restore
protocol is proposed to minimize the backoff duration.
In addition, a prototype has been implemented on QE-
MU/KVM. The experimental results demonstrate that
HotRestore can restore the VMC within a few second-
s whilst reducing the TCP backoff duration to merely
dozens of milliseconds.

1 Introduction

Machine virtualization is now widely used in datacenters
and this has led to lots of changes to distributed applica-
tions within virtualized environments. In particular, the
distributed applications are now encapsulated into vir-
tual machine cluster (VMC) which provides an isolat-
ed and scaled computing paradigm [1, 24, 22]. How-
ever, failures increasingly become the norm rather than
the exception in large scale data centers [17, 35]. The
variety of unpredictable failures might cause VM crash
or network interruption, and further lead to the unavail-

ability of applications running inside the VMC. There
are many approaches for reliability enhancement in vir-
tualized environment. Snapshot/restore [25, 39, 40, 37]
is the most widely used one among them. It saves the
running state of the applications periodically during the
failure-free execution. Upon a failure, the system can re-
store the computation from a recorded intermediate state
rather than the initial state, thereby significantly reducing
the amount of lost computation. This feature enables the
system administrators to recover the system and imme-
diately regain the full capacity in the face of failures.

In the past decades, several methods have been pro-
posed to create distributed snapshot of VMC, and most
of them aim to guarantee the global consistency whilst
reducing the overhead such as downtime, snapshot size,
duration, etc [11, 25, 14]. However, restoring the VM-
C has received less attention probably because restora-
tion is only required upon failures. As a matter of fact,
due to the frequently occurring failures in large scale data
centers, restoration becomes frequent events accordingly
[35]. Worse still, just one VM crash would lead to the
entire VMC’s restoration with the consistency guarantee
taken into account. The frequent restoration of multiple
virtual machines cause non-negligible overheads such as
restore latency and performance penalty. Here, restore
latency is referred to the time to load saved states from
the persistent storage until the VM execution is resumed.

There are a few well-studied works on improving VM
restoration. Working set restore [39, 40] is one solu-
tion proposed recently, and it restores a single VM by
prefetching the working set. Since the working set re-
flects the access locality, this method reduces the restore
latency without compromising performance. It seems
that the VMC restore could be simply accomplished by
restoring the VMs individually with working set restore
[19]. Unfortunately, several practical drawbacks are still
far from settled.

First, the restore latency with working set restore is
still long. In fact, the latency is proportional to the work-

1



2  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

backoff

SYN_RCVD

TIME_OUT

restore

SYN SYN/ACK

VM1

VM2

VM2

VM1 restoring

restoring

started

started

1 2 3 4 ACK

retransmit

Figure 1: A TCP transmission case during restoration.
VM1 after start sends packet1 to VM2, and this packet
will be lost because VM2 which is restoring is currently
suspended. VM1 would resend this packet once retrans-
mission timeout (RTO) is reached. Packets 2, 3, 4 are
retransmitted items of packet1. If packet1 is a SYN to
connect VM2, the TCP handshake would fail if the re-
transmission duration exceeds TCP connection timeout.
If packet1 is a heartbeat packet, the timeout may cause
VM2 be falsely reported as fail which would result in
misbehaviour.

ing set size which is directly related to the workload ac-
tivity. For memory intensive tasks, the working set might
be the entire memory, so that the working set restore de-
grades to eager restore[37] which starts the VM after all
state is loaded.

Second, due to the heterogeneity of virtual machines
cooperated in the VMC as well as the variety of work-
loads, the working set sizes of various VMs may be d-
ifferent. This difference results in diverse restore laten-
cies and hence causes VMs being launched at different
times. As a result, if the prior started VM sends a pack-
et to a restoring one, it will not receive any reply within
a while. This might lead to temporary backoff of active
TCP connections as illustrated in Figure 1.

Therefore, in the cluster, the practical VM disruption
time not only involves the restore latency but is deter-
mined by the TCP backoff duration as well. The backoff
duration directly depends on the degree of discrepancy
among VMs’ restore completion times, i.e., start times.
What’s more, due to the complexity of workloads, these
VMs may differ greatly in working set sizes, making
TCP backoff duration the dominant factor in disruption.

In this paper, we propose HotRestore, which is capa-
ble of restoring the saved state of VMC swiftly and ef-
ficiently. Unlike prior VMC restore tools, HotRestore
could resume the applications’ execution within a few
seconds and the applications can regain their full capac-
ity rapidly. Moreover, the distributed applications only
suffer transient network interruption during the restora-
tion. Consequently, HotRestore can be naturally adopt-
ed in scenarios with high availability requirement, where
fast recovery is essentially critical to provide reliable ser-

vices to end users.
HotRestore proposes two key ideas to achieve these

objectives. On one hand, it traces the memory access
during post-snapshot, and records the traced pages in a
first-access-first-load (FAFL) queue, which finally con-
stitutes an elastic working set. The motivation behind
is that when a VM is restored, it will be roll-backed
to the snapshot point. If the execution is deterministic,
the VM will re-execute in the same way as that of post-
snapshot. As a result, the traced memory pages during
post-snapshot will be touched again and thus can be re-
garded as working set pages. By only loading the work-
ing set pages upon restoration, the restore latency de-
creases with a lot.

On the other hand, restore line which depicts the s-
tart times of VMs is designed in order to reduce the TCP
backoff duration. The basic idea is that for a packet sent
from one VM, the associated destination VM must have
been started to receive the packet for preventing potential
backoff. The restore line derives from defacto restore
order and causal restore order. The former one is re-
vealed by the calculated working set sizes of VMs while
the latter is communication-induced. Since the seman-
tics of the two orders might conflict, HotRestore revises
the working set sizes to make defacto order be consisten-
t with causal order, and thereafter computes the restore
line. Moreover, a restore protocol is designed to guaran-
tee that the VMs can start as indicated by the restore line,
thereby significantly minimizing the backoff duration.

Our contribution is three-fold. First, we introduce e-
lastic working set, which is a subset of active memory
pages in any desired size, in order to restore a single VM
rapidly. Second, we propose restore line for virtual ma-
chines that cooperate into a cluster, schedule the VMs’
start times to minimize the TCP backoff duration. Third,
we have implemented HotRestore on our previous work
called HotSnap [14] which creates distributed snapshots
of the VMC, and conducted several experiments to justi-
fy its effectiveness.

The rest of the paper is organized as follows. The next
section gives a brief overview of previous work on Hot-
Snap. Section 3 presents the concepts and implemen-
tation of elastic working set. Section 4 introduces the
algorithm to compute the restore line and describes the
restore protocol. Section 5 introduces several implemen-
tation details on QEMU/KVM platform followed by the
experimental results in Section 6. Finally we present the
previous work related to HotRestore in section 7 and con-
clude our work in Section 8 and 9.

2 A Brief Overview of HotSnap

HotSnap creates a global consistent state among the VM-
s’ snapshots. It proposes a two stage VM snapshot cre-

2



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  3

ation approach consisting of transient snapshot and full
snapshot. In transient snapshot, HotSnap suspends the
VM, records the CPU and devices’ state, sets guest mem-
ory pages to be write-protected, and then starts the VM.
After that, full snapshot starts up. HotSnap will save the
guest pages in a copy-on-write manner. Specifically, up-
on a page fault triggered by touching the write-protected
page, HotSnap will save the page into snapshot file, re-
move the write-protect flag and then resume the VM. The
recorded snapshot is actually the instantaneous state in
transient snapshot; therefore full snapshot is actually a
part of post-snapshot stage.

In HotSnap, we tailor the classical message coloring
method to suit to virtualized platforms. In the coloring
method, the packet color is divided into pre-snapshot and
post-snapshot, so is the VM color. HotSnap intercepts
the packet sent and received by the simulated tap device
on QEMU/KVM. For a packet to be sent, HotSnap pig-
gybacks the packet with the immediate VM color. For
a received packet, if the packet color is post-snapshot
while the VM color is pre-snapshot, the packet will be
temporarily dropped to avoid inconsistency; otherwise,
the packet will be forwarded to the virtual machine and
be finally handled.

The consistency of global state is guaranteed during
snapshot creation by HotSnap. Therefore, HotRestore
makes no attempt to ensure consistency upon restoration,
which is different to previous works that focus on consis-
tency as well as avoiding domino effect [16, 34, 36].

3 Elastic Working Set

This section first presents the estimation method of elas-
tic working set, and then describes how to create snap-
shot and restore the VM when working set is employed.

3.1 Working Set Estimation

An elastic working set should satisfy three requirements.
Firstly, the restore latency is as short as possible with-
out comprising application performance. Secondly, high
hit rate and high accuracy are achieved after VM starts.
High hit rate implies most of the accessed pages hit in
the working set, while high accuracy means most of the
working set pages will be touched within a short while
after VM starts. Thirdly, the working set size could scale
up or scale down without the decrement of hit rate, ac-
curacy and performance. In this manner, the size can be
revised on-demand upon VMC restoration. To estimate
one such working set, we need to determine: i) which
pages should be filled into the working set, and ii) how
many pages should be loaded on restoration (or namely
the working set size).

scale upscale down

… …

… …A B C D E F

A B C D E F

G

access

Enqueue

FAFL queue

Memory tracing

Dequeue

Working set

Figure 2: Elastic working set with the FAFL queue.

3.1.1 Working Set Pages

Upon restoration, the VM will be roll-backed to the
saved snapshot point and continue to execute. Ideally,
if the execution is deterministic, the VM after restora-
tion will re-execute the same instructions and touch the
same memory area as that of post-snapshot. This in-
sight inspires us to trace these memory access during
post-snapshot and regard the traced pages as candidate
working set pages for producing the final working set.

Optimal selection from the candidate pages has been
well studied. LRU and CLOCK are two classical
and widely-used page replacement algorithms [23, 41].
However, we argue that the FIFO manner could be bet-
ter in the mentioned scenario within the paper. The rea-
son is as follows. If the execution is deterministic, the
page access order after restoration remains the same as
that of post-snapshot. This implies that the first accessed
page during post-snapshot will be firstly accessed after
restoration. As a result, HotRestore adopts a first-access-
first-load (FAFL) manner to determine the working set
pages. Specifically, HotRestore saves the traced pages
in the FAFL queue during post-snapshot, and loads the
pages dequeued from the queue upon restoration. Figure
2 illustrates the overview of the FAFL queue. The traced
pages, i.e., A-F, have been stored in the queue in access
order, and the working set can be simply produced by
dequeuing the pages from the queue.

Elasticity is another crucial feature of the FAFL queue.
The queue depicts the order of pages which are touched
by guest kernel or applications during post-snapshot. On
tone hand, given that the VM execution is determinis-
tic, loading more or fewer pages into the working set
upon restoration will not influence the hit rate or accu-
racy seriously. Consequently, it enables the working set
to scale up/down efficiently. On the other hand, the back-
ground load thread after VM is launched could still fetch
the pages in the FAFL manner rather than loading the
pages blindly. In this way, the probability of page fault

3



4  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

could be effectively reduced. This is essentially impor-
tant to maintain the application performance without se-
vere degradation when the working set size decreases.

The external inputs events or time change make the
VM execution be non-deterministic invariably in real
world scenarios. Despite this, our experimental result-
s1 show that elastic working set could achieve high hit
rate and accuracy. Meanwhile, it could scale up and s-
cale down without compromising performance.

3.1.2 Working Set Size

The working set size plays an important role when
rolling back. Although a small size reduces the restore
latency, it incurs numerous page faults, and thus aggra-
vating the decreased performance after restoration. On
the other hand, a large size could avoid severe perfor-
mance penalty incurred by more loaded memory pages,
but at the cost of long latency.

Statistical sampling approach described in ESX Serv-
er [38] is frequently used to predict the working set size.
However, it lacks the ability to respond to the phase
changes of workload in real time which is critical in
restoration. Since the working set size upon restoration
should capture the size of workload activity in a timely
manner, we propose a hybrid working set size estimation
method. First, we adopt a statistical sampling approach
to calculate the working set size during normal execu-
tion. The size depicts the average workload activity in a
long period, and is referred to as WSSsample. Secondly,
we count the touched pages during post-snapshot. The
page count reflects timely workload activity in part, and
is referred to as WSSsnapshot . The expected working set
size is the weighted sum of these two sizes and is deter-
mined by: WSS = α ∗WSSsample +β ∗WSSsnapshot

In most programs, WSS remains nearly constant with-
in a phase and then changes alternately. Since the work-
load always keeps steady for quite a while [41], we em-
pirically set α to be larger in HotRestore, i.e., α is 0.7
and β is 0.3. In addition, due to the well scalability of
the FAFL queue, we adopt WSS/2 rather than WSS as the
actual working set size upon restoration. The remain-
ing pages will be loaded by the background thread from
the FAFL queue or by demand-paging. The experimen-
tal results in §6.1.3 demonstrate that the size shrink only
incurs negligible performance overhead.

3.2 Snapshot and Restore
This section describes the VM snapshot and restore when
elastic working set is employed.

Snapshot. Unlike HotSnap which only traces the
memory write operations, HotRestore traces all access-

1§6.1 will explain the results.

es and records them in the FAFL queue to estimate the
working set. Therefore, HotRestore adopts a snapshot
approach that consists of copy-on-write and record-on-
access. In detail, HotRestore sets the guest memory
pages to be non-present to trace all accesses. For write
operation, HotRestore records the page frame number in-
to the FAFL queue, saves the page content into persistent
storage, and then removes the non-present flag to allow
the page to be read or written without fault later on. For
read operation, HotRestore only records the page frame
number but does not save the page content. This is be-
cause read operations occur much more frequently than
write operations, and saving the page content would lead
to serious performance degradation. Therefore, HotRe-
store removes the read-protect flag but reserves the write-
protect flag. The page content will be saved either in
copy-on-write manner once it is required to be written or
by the background copy thread.

Restore. Upon restoration, HotRestore firstly load-
s the CPU state and devices’ state, and then fetches the
working set pages into the guest memory. Afterwards, it
sets the page table entries of unrestored pages to be non-
present before starting the VM. The unrestored pages
will be loaded by i) on-demand paging due to touching
the non-present page after VM starts, or ii) background
load thread running concurrently which ensures that re-
store finishes in a reasonable period of time.

4 Restore of Virtual Machine Cluster

The key of VMC restore is to mitigate the TCP backoff
problem. In TCP, after sending a packet, the sender will
wait for the ack from the receiver. It would resend the
packet once timeout occurs to ensure that the packet is
successfully received. Motivated by this, the basic idea
to avoid TCP backoff is to ensure the receiver start before
the sender.

This section presents our solution to VMC restore. We
start by describing the communication-induced restore
dependency graph (RDG). Based on RDG, we compute
the causal restore order2 of VMs, and then schedule the
restore line by revising the working set sizes of VMs.
Finally, we introduce the restore protocol which ensures
the VMs start as indicated by the restore line.

4.1 Restore Dependency Graph
We define ”V Mi depends on V Mj” or V Mi→V Mj if V Mi
sends a packet to V Mj. If V Mi sends a packet to V Mj dur-
ing snapshot, it will resend the packet after it is restored
to the saved snapshot point. Therefore, the dependency

2The restore order here describes the order of completion times of
the working set restore, or namely VM start times, rather than restore
start times.

4



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  5

VM1

VM2

VM3

VM4

VM5

(a) Time-space execution

VM2 VM4

VM5

VM3VM1

(b) Restore dependency graph

Figure 3: Communication-induced RDG.

can be reserved upon restoration (we guarantee the de-
pendency by deterministic communication in §5.1). This
motivates us to construct the RDG via the dependency
among VMs. In RDG, each node represents one VM,
and a directed edge is drawn from V Mi to V Mj if V Mi
depends on V Mj. The name ”restore dependency graph”
comes from the observation that if there is an edge from
V Mi to V Mj and V Mi is to be restored, then V Mj must
be restored no later than V Mi to be ready to receive the
packet and make the reply. Restore here means the ”re-
store end” or ”VM start”, rather than ”restore start”. The
dependency in RDG is transitive, i.e., if V Mi→V Mj and
V Mj→V Mk, then V Mi→V Mk.

Figure 3(b) demonstrates a RDG yielded by the time-
space diagram in Figure 3(a). RDG only depicts the
dependency between different VMs, i.e., space, but has
no concept of time whether it is physical time or glob-
al virtual time. This is because the packet order and
send/receive time may change after restoration due to
non-deterministic execution. The lack of time seman-
tics allows the existence of dependency ring, e.g., VM1,
VM2 and VM3 in Figure 3(b) form a ring. We define
V Mi ↔ V Mj if V Mi and V Mj are in a ring. VM5 is an
orphan node; it neither depends on any VM, nor is de-
pended by other VMs. The orphan node reflects the case
that there is no packet sent or received associated with
the node.

4.2 Restore Line Calculation

Restore line depicts the desired start times of VMs while
guaranteeing the causal restore order of VMs. The causal
restore order can be calculated from the restore depen-
dency graph: if V Mi → V Mj in RDG, then V Mj should
be ahead of V Mi in causal restore order. Moreover, the
VM start time (or restore latency) is related to the work-
ing set size. The different working set sizes of VMs form
the defacto restore order. This motivates us to compute
the restore line by the causal restore order as well as the
defacto restore order.

4.2.1 Causal Restore Order

The causal restore order is the semantics of logical s-
tart time; each dependency edge represents one elapsed
clock. It is insufficient to obtain a unique causal restore
order solely on RDG. First, the RDG is not necessarily a
complete graph, e.g., there is no path between VM2 and
VM4, implying VM2 and VM4 can be restored indepen-
dently after VM3. Second, the existence of the depen-
dency ring and orphan node make a lot of choices on the
order. As a result, rather than compute a unique order, we
instead give the following rules to construct one feasible
causal restore order through RDG.

Rule 1. The VM, which doesn’t depend on other VMs
but is depended, is prioritized in causal restore order.

Rule 2. V Mi should restore after V Mj, if V Mi depends
on V Mj while V Mj does not depend on V Mi.

Rule 3. The VM that depends on several VMs will not
restore until all the depended VMs are restored.

Rule 4. The VMs can restore independently if no de-
pendency exists between them.

Rule 5. The VMs in the ring restore at the same time,
i.e., they are placed together in causal restore order.

Rule 6. An orphan node may execute independently
and therefore will be free in causal restore order.

Rule 1 seeks the VMs that should be restored first.
Once found, the VMs that depend on prior restored VM-
s will join in the causal restore order by Rules 2 and 3.
Rule 4 implies that the VMs can restore independently if
there is neither direct nor transitive dependency between
them. Based on these rules, we can reach two conclu-
sions. First, after the completion of loading the working
set, the VM can start if it satisfies any one of Rules 1, 4,
5, and 6. Second, after one VM is started, the VM can
start accordingly if it depends on this started VM and
satisfies Rule 2 or Rule 3 as well.

4.2.2 Defacto Restore Order

The previously calculated working set sizes of VMs are
always different due to the phase changes of workload,
varieties of workloads or VM heterogeneity. These dif-
ferent sizes lead to different restore latencies and further
form the defacto restore order which can be regarded as
the semantics of physical start time.

The problem here is that the VM that is prior in causal
restore order may have a larger working set size and thus
starts later than the latter VM, making the defacto restore
order inconsistent with the causal restore order. The in-
consistency results in the TCP backoff problem as men-
tioned above. As a result, revising the working set sizes
to match the two semantics becomes one crux of the
problem in restoring the VMC. First, the defacto restore
order after revision should be consistent with the causal
restore order, to avoid TCP backoff. Second, the revised

5



6  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

(c) Consistent semantics after revision

(b) Inconsistent semantics 

VM1
350

VM2
280

VM5
320

14
17

VM3
300

VM4
290

21

(a) Weighted RDG

VM1
350

VM5
320

VM3
300

VM2
280

VM4
290

VM1VM5VM4VM2VM3

Figure 4: The revision of working set sizes. (a) is derived
from Figure 3, while the dependency between VM1 and
VM3 is removed.

working set size should not impose significant effects on
latency or performance for a single VM, i.e., minimum
change on previous working set size.

4.2.3 Working Set Size Revision

The basic idea of revision is simple. Given that a case
that V Mi→V Mj, but the working set size of V Mj, i.e.,
S j, is larger than Si, we can decrease S j or increase Si, or
change the two both to achieve the matching.

System Model. We consider network intensive appli-
cations which is common in nowadays large scale data
centers, such as distributed database, scientific comput-
ing, web services [1], etc. Their characteristic lies in that
the communicating VMs send and receive packets fre-
quently. We transfer the RDG to weighted RDG with the
assignment to node value and edge weight, as shown in
Figure 4(a).

In weighted RDG, the node value Si is referred to as
the previous calculated working set size (WSS) of V Mi.
The edge weight Wi, j denotes the number of the captured
packets sent from V Mi to V Mj during snapshot. Here,
Wi, j has no practical meaning, it is just used to ensure
that the revised Si, i.e., S∗i , be larger than S∗j if V Mi de-
pends on V Mj. We denote this relation by S∗i � S∗j +Wi, j.
Moreover, this inequation implies that if V Mi → V Mj
and V Mj → V Mk, then S∗i � S∗k +Wi, j +Wj,k. Wi, j is
minor compared to S∗i or S∗j , hence it causes no signif-
icant effect on the revised size. The dependency ring
is particular, because the virtual machines in the ring
should be provided with equivalent size to start at the
same time. Therefore, for V Mi ↔ V Mj, we determine
the sizes by:S∗i −S∗j = 0.

Figure 4(b) demonstrates an inconsistent graph yield-
ed by the weighted RDG in Figure 4(a). The horizontal
line shows the defacto restore order, and the arrow de-
picts the causal restore order. The defacto restore order
is [VM2, VM4, VM3, VM5, VM1], while there exist
several candidates for causal restore order, e.g., [VM3,
VM4, VM2, VM1, VM5], or [VM3, VM2, VM4, VM5,
VM1]. Our goal is to reorder the nodes in the horizontal

RESTORE_FIN

VM startBackground
load

Load
working set

START_FIN

START

START

START_FIN

LOAD

LOAD_FIN

HOTRESTORE
OVER

RESTORE

Coordinator Cohort A Cohort BUser

C
hecker

Background load &
on-demand paging

RESTORE
OVER

Figure 5: Restore protocol. We assume that B depends
on A, so that B starts later.

line with the least movement, to guarantee consistency
between the causal order and the revised defacto order,
such as the example shown in Figure 4(c).

Problem Formulation. We assume that the previous
calculated working set size is optimal. This is reasonable
since the previous size achieves well tradeoff between
restore latency and performance loss for a single VM, as
demonstrated in the experimental results in §6.1.3. Giv-
en n VMs, let S = {S1,S2, ...,Sn} be the previous work-
ing set sizes of VMs and W = {Wi, j|V Mi → V Mj} be
the set of edge weight of each two communicating VMs.
We aim to find a minimum revised working set size S∗

to guarantee the consistency between the revised defacto
restore order and causal restore order. The formulation is
denoted by:

min ∑n
i=0 | S∗i −Si |

s.t. S∗i −S∗j �Wi, j (Wi, j ∈W )

S∗i −S∗j = 0 (V Mi ↔V Mj)

We use the classical Linear Programming approach [26]
to solve this optimization problem. Consequently, the
desired restore line is computed through arranging the
VMs in ascending order of the revised working set sizes.

4.3 Restore Protocol
The purpose of restore protocol is to ensure that the vir-
tual machines start as indicated by the restore line. The
restore protocol is entirely software based and does not
depend on any specialized hardware. We make the fol-
lowing assumptions about the distributed VMC system.
First, the VMs, the underlying physical servers as well

6



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  7

as the network devices are failure-free during restoring.
This is reasonable since the restoration procedure last-
s for a short time compared to the mean time to failure
(MTTF) of hardware or software. Second, the network
latency is minor, i.e., the messages can be received with-
in a relatively short period. Otherwise, the restore laten-
cy would be directly related to the network latency on
waiting for the messages of protocol. This assumption is
satisfied in nowadays data center networks which always
utilize 1Gbps or even 10Gbps Ethernet.

There exist two roles in restore protocol, Coordina-
tor and Cohort, as shown in Figure 5. Each virtual ma-
chine is associated with one Cohort, and only one VM
is regarded as the Coordinator. The roles of Coordina-
tor consist of constructing the restore dependency graph,
scheduling the restore line, broadcasting the working set
sizes of VMs and notifying Cohorts to load the work-
ing set or start to execute. Besides, the Coordinator em-
ploys Checker to determine whether the associated VM
can start after receiving the LOAD FIN reply from the
Cohort, and which VMs can start correspondingly once
receiving the START FIN reply from one Cohort, as de-
scribed in §4.2.1. The Cohort restores the VM through
three steps: i) load the working set pages after receiv-
ing the LOAD command and then reply LOAD FIN, ii)
load the pages in background until receiving the START
command, and iii) start the VM after receiving the S-
TART command, reply the START FIN command, and
then load the remaining pages through on-demand pag-
ing along with background loading.

Disruption will disappear after all the VMs are started,
meanwhile the hot restoration is completed. The whole
restoration procedure will not finish until all the VMs
reply RESTORE FIN after completion of loading the re-
maining memory pages from the snapshot file.

5 Implementation Issues

HotRestore is implemented on qemu-kvm-0.12.5 [28]
in Linux kernel 2.6.32.5-amd64, it does not require the
modification of guest OS. HotRestore utilizes HotSnap
to guarantee global consistency of snapshot state. Some
optimizations such as compression of zero pages are
provided by HotSnap and are also employed in HotRe-
store. Since the page saved in background belongs to the
working set if it is accessed during snapshot procedure,
HotRestore stores the working set pages in the snapshot
file instead of a separate file. Besides, it creates a FAFL
file to store the guest frame number for indexing these
pages. The FAFL file makes it convenient to fetch work-
ing set pages in any desired size. The rest of this section
describes the sub-level parts and optimizations in detail.

5.1 Packets Used to Construct RDG

In reliable communication, the receiver will reply ack to
the sender. The capture of data/ack packets makes sender
and receiver depend on each other and further form a ring
in RDG. The dependency from receiver to sender is com-
pelled, therefore it should be removed when constructing
the RDG. One possible approach is to identify the roles
by analyzing the packets, however it is extremely com-
plicated and is impractical. Therefore, we resort to the
on-the-fly packets, which cannot be received by the des-
tination VM during transient snapshot. It cannot be re-
ceived due to two reasons: i) the receiver VM is suspend-
ed to create transient snapshot or ii) the packet violates
the global consistency, i.e., it is sent from a post-snapshot
VM to a pre-snapshot VM. HotRestore logs on-the-fly
packets on the receiver side, and constructs the RDG
through these packets. Logging these packets brings two
benefits. First, the on-the-fly packet will not be received
or handled, and hence avoiding two-way dependency for
one transmission. Second, replaying these packets after
restoration can ensure deterministic communication, and
hence the dependency is preserved.

UDP packets are also preserved. Although UDP is
unreliable, the applications may support the reliability
themselves through retransmission. This reliability guar-
antee would lead to the interruption of network commu-
nication if UDP packets are lost upon restoration. In con-
clusion, on constructing the RDG, we employ TCP as
well as UDP packets whose source and destination are
both the VMs within the VMC.

5.2 Optimizations on Restore

HotRestore adopts several optimizations to reduce the re-
store latency as well as performance overhead.

Sequential loading of working set pages. In HotRe-
store, the working set pages scatter here and there in
the snapshot file and are mixed with the pages saved in
background. Upon restoration, HotRestore dequeues the
guest frame number (gfn) from the FAFL queue to in-
dex the working set page. However, the gfn order in the
FAFL queue is not consistent with that in the snapshot
file. For example, page A is firstly saved in background,
and then page B is saved and recorded due to memo-
ry write operation, finally A is recorded due to memory
read. In this case, A is stored in front of B in the snap-
shot file, but is behind B in the FAFL queue. Fetching the
working set pages in FAFL order would seek the pages
back and forth in the disk file, thereby incurring longer
latency. To solve this problem, we rearrange the work-
ing set pages by their file offset once the revised size S∗ is
known, so that the pages can be loaded sequentially from
the snapshot file. Besides, the pages that are neighboring

7



8  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

in the snapshot file can be loaded together to further re-
duce the amount of file read operations.

DMA cluster. DMA pages are touched frequently for
IO intensive workloads, e.g., we observe about 280,000
DMA access in 30 seconds execution under Gzip for a
VM configured with 2GB RAM. DMA page access ex-
hibits two characteristics: First, the page will be accessed
repeatedly (may be hundreds or even thousands times),
therefore the amount of touched pages is actually only a
few hundreds or thousands. Second, the accessed pages
are always neighboring. These observations inspire us
to load multiple neighboring pages (HotResotre loads 4
pages) for each on-demand DMA paging to reduce the
occurrence of demand-loading, thereby avoiding signifi-
cant performance degradation incurred by page faults.

5.3 Real World I/O Bandwidth

In real world scenarios, the restore latency is related to
not only the working set size, but also the available I/O
bandwidth. The snapshot procedures may contend for
I/O bandwidth, making the latencies various even if the
file sizes are identical. As a result, the practical start
times may be not as indicated in the restore line. In
our test environments, the working set size is small while
the bandwidth is sufficient, so that the restore latency is
less affected. However, we believe that this problem will
get worse for memory intensive workloads, especially in
I/O intensive data centers. VM placement [30] and I/O
schedule layer [32] are alternative approaches to mitigate
this problem, and we leave this as our future work.

5.4 Non-deterministic Events

There exist many events that lead to non-deterministic
system execution, they fall into two categories: external
input and time [13]. The external input involves the da-
ta sent from another entity, such as the network packets
from the web server, or user operations (e.g., booting a
new application). Time refers to the point in the exe-
cution stream where the internal or external event takes
place, for example, the receiving time of network pack-
ets. The combination of the two influences the results
of several strategies resides in CPU scheduler, IO sched-
uler, and TCP/IP stack, so that the system execution is
diverged even the system is restored from the same s-
napshot point. Fortunately, compared to the individual
desktop which involves multiple tasks and continual in-
teractive operations, the distributed applications running
in the virtual machine cluster are always monotonous and
involves less user interaction, making the execution of
the virtual machine be always deterministic.

6 Evaluation

We conduct the experiments on eight physical server-
s, each configured with 8-way quad-core Intel Xeon
2.4GHz processors, 48GB DDR memory and Intel 82576
Gbps Ethernet card. The servers are connected via
switched Gbps Ethernet. We configure 2GB memory for
the VMs. The operating system on physical server and
virtual machine is debian6.0 with 2.6.32-5-amd64 ker-
nel. We save the snapshot files in local disk, and then
restore the virtual machines from snapshot files to evalu-
ate HotRestore.

6.1 Elastic Working Set

We evaluate the elastic working set in terms of hit rate,
accuracy, working set size and scalability, under several
applications. The applications include: 1) Compilation, a
development workload which involves memory and disk
I/O operations. We compile the Linux 2.6.32-5 kernel.
2) Gzip is a compression utility, we compress the /home
directory whose size is 1.4GB. 3) Mummer is a bioinfor-
matics program for sequence alignment, it is CPU and
memory intensive [5]. We align two genome fragments
obtained from NCBI [2]. 4) Pi calculation, a CPU in-
tensive scientific program. 5) MPlayer is a movie play-
er. It prefetches a large fraction of movie file into buffer
for performance requirements. 6) MySQL is a database
management system [6], we employ SysBench tool [9]
to read (write) data from (to) the database. We conduct
the experiments ten times and report the average as well
as the standard deviation.

6.1.1 Hit Rate and Accuracy

We first measure the hit rate and accuracy under differ-
ent working set sizes. We start the VM after the working
set in the specified size is loaded, and disable the back-
ground load thread to trace all memory accesses. If the
traced page is in the working set, then a hit occurs, and
the hit count increases by 1. The traced page will not be
traced again, since multiple hits on the same page would
increase the hit rate and accuracy. Once the count of the
traced pages reaches the given size, we calculate the hit
rate by the ratio of hit count to the given size. The ac-
curacy calculation is a little different. We observe that
most of the untouched working set pages will be touched
within a short period. Therefore, we trace an extra 1/5
size, and calculate the accuracy by the ratio of hit count
to 1.2 times given size.

Table 1 demonstrates the hit rate and accuracy of
FAFL compared to LRU and CLOCK under Linux kernel
compilation. It can be seen that the hit rate with FAFL
is higher, e.g., for a 15K size, the hit rate with FAFL

8



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  9

Hit Rate Accuracy

Size FAFL LRU CLOCK FAFL LRU CLOCK

5K 0.816 0.778 0.814 0.859 0.817 0.838
10K 0.845 0.875 0.749 0.945 0.918 0.926
15K 0.944 0.857 0.868 0.952 0.954 0.952
17K 0.912 0.918 0.822 0.958 0.955 0.955
20K 0.889 0.888 0.828 0.963 0.962 0.923
25K 0.870 0.861 0.869 0.962 0.963 0.970

Table 1: Hit rate and accuracy for working set with various sizes. Here, the size refers to page count, the calculated
WSS is 17K. STDEV is minor and thus is removed.

Hit Rate Accuracy

Workloads FAFL LRU CLOCK FAFL LRU CLOCK

Gzip 0.806 0.768 0.883 0.974 0.979 0.966
MySQL 0.947 0.655 0.912 1 0.998 1
Mummer 0.931 0.835 0.812 1 0.971 0.909
Pi 0.628 0.562 0.589 0.702 0.682 0.793
MPlayer 0.890 0.825 0.862 0.926 0.923 0.892

Table 2: Hit rate and accuracy under various workloads. STDEV is minor and thus is removed.

is 94.4% while it is 85.7% with LRU and 86.8% with
CLOCK. The improvement is mainly contributed to the
FAFL queue which captures the access order of VM ex-
ecution more accurately. An interesting result is that the
hit rate decreases as the size grows, e.g., the hit rate with
FAFL decreases from 94.4% to 88.9% while the size in-
creases from 15K to 20K. We suspect that this is because
the execution suffers from larger deviation after longer
execution time. Despite this, the hit rate is still high. Be-
sides, the accuracy of the three manners exceeds 95%
in most cases. This fact proves that the memory tracing
method during post-snapshot could capture the memory
accesses accurately.

We also measure the hit rate and accuracy under oth-
er workloads. Table 2 illustrates the results when the
calculated working set size is applied upon restoration.
We can see that the hit rate under Gzip workload is low,
this is because Gzip is I/O intensive and involves large
amounts of DMA operations which always diverge after
the VM is restored. For MySQL, Mummer and MPlayer
workloads, the hit rate and accuracy is high due to two
reasons: i) these workloads consist of a large amount of
pages that hit the buffer cache which facilitate working
set estimation and ii) their executions are almost deter-
ministic. The high rate under Pi workload is poor, e.g., it
is 62.8% with FAFL, this is due to the dynamic memory
allocation during execution. Fortunately, the associated
working set size is small, it is less than 1K pages, so
that the performance loss is insignificant after the VM is
restored. These three methods all achieve high accuracy,

this means that most of the loaded working set pages will
be touched by the applications after the VM is restored.
The accuracy under Pi workload is low, we guess that
this is due to the non-deterministic execution of Pi. On
average, FAFL increases the hit rate by 15.3% and 4.92%
respectively compared to LRU and CLOCK.

6.1.2 Working Set Size

Here, the working set size is referred to as the total
amount of loaded state including the CPU state, devices’
state, page content and extra information such as page
address. Zero page compression used in most snap-
shot technologies may achieve 50% reduction of snap-
shot size [21]; however, the reduction is specific to work-
load and relates to application execution time. As a re-
sult, this optimization is disabled in this experiment. Ta-
ble 3 compares HotRestore with working set restore [39]
which calculates the working set size through the statis-
tical sampling approach.

As expected, HotRestore loads less pages upon
restoration. Compared to working set restore, HotRe-
store reduces the working set size by 50.95% on average,
therefore the restore latency is supposed to be halved ac-
cordingly. Although restoring a VM requires extra time
to sort the working set pages and set protection flags,
the extra time is minor. Compared to the default restore
method in QEMU/KVM which takes about 60 second-
s to load a 2G snapshot file, HotRestore can restore the
VM within 3 seconds for most workloads.

9



10  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

Modes Compilation Gzip Mummer Pi MPlayer MySQL

HotRestore 72.0(2.88) 60.9(15.3) 347.5(30.7) 1.5(0.09) 37.2(6.4) 42.4(8.9)
Working Set Restore 153.0(7.92) 113.5(21.2) 836.3(117.9) 2.76(0.17) 75.3(9.4) 87.8(11.4)

Reduction 52.94% 46.34% 58.45% 45.65% 50.6% 51.71%

Table 3: Comparison of working set sizes (MB). STDEV is also reported

6.1.3 Scalability

The results in Table 1 have shown that the hit rate and
accuracy remain high regardless of the working set sizes,
they therefore prove that the elastic working set can scale
up or scale down without compromising the hit rate or
accuracy.

On the other hand, however, scaling down the size
would bring more page faults due to demand-paging and
thus imposes performance overhead. Therefore, the per-
formance loss or the count of page faults should be mea-
sured and reported. We trace the page faults after restora-
tion and record the count in 100ms interval. Figure 6
shows the count on different working set sizes: the cal-
culated WSS and its two variants, 0.5WSS and 0.7WSS.
WSS is 18327 pages in this experiment. As we can see,
the decrease of the working set size indeed incurs more
page faults. Specifically, the numbers are 2046, 3539 and
5690 for WSS, 0.7WSS and 0.5WSS respectively during
the 7 seconds tracing period. Intuitively, the increased
count of page faults should be equivalent to or approxi-
mate the saved page count upon restoration. However,
our results show that it is not. For example, 0.7WSS
loads 5498 less pages upon restoration but incurs only
1493 more page faults compared to WSS. This is mainly
because the pages stored in the FAFL queue depict the
page access order. If the WSS applied upon restoration
is less than the calculated WSS, the remaining working
set pages tend to be dequeued and loaded by the back-
ground load thread. The FAFL method effectively re-
duces the count of page faults compared to the approach
which loads pages blindly.

The result for 2WSS is also given, as shown in Fig-
ure 6(d). It can be seen that the count of page faults can
be further reduced due to the increase of WSS, specifi-
cally, it decreases to 958. However, we believe that the
reduction is insignificant. This is because that one page
fault incurs about 200us interruption which involves the
time to exit to VMM, load the page from local disk, re-
move protection flag and resume the VM. Therefore, the
overall overhead for handling thousands of page faults is
negligible compared to the gain of 50% reduction on the
working set size or namely the restore latency.

These results show that the working set can scale
up/down without significant performance loss. This
gives us a hint that slight working set size revision is al-

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

Pa
ge

fa
ul

tc
ou

nt

Elapsed Time (seconds)

(a) 0.5WSS

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

Pa
ge

fa
ul

tc
ou

nt

Elapsed Time (seconds)

(b) 0.7WSS

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

Pa
ge

fa
ul

tc
ou

nt

Elapsed Time (seconds)

(c) 1WSS

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

Pa
ge

fa
ul

tc
ou

nt

Elapsed Time (seconds)

(d) 2WSS

Figure 6: Comparison of page fault count after restore.

lowable when restoring the VMC. The results under oth-
er workloads are similar, so that they are ignored due to
space constraints.

6.2 Restoration of VMC
In this section, we evaluate HotRestore in the VMC and
discuss the restore latency as well as the TCP backof-
f duration. The native restore method of QEMU/KVM
incurs dozens of seconds disruption, so the result is ne-
glected here. We conduct the experiments with three re-
store mechanisms:

Working Set Restore. It reduces the restore latency
by prefetching the working set for a single VM.

HotRestore without Restore Line (HotRestore w/o
RL). It reduces the restore latency through elastic work-
ing set, but does no further work on VMC restore.

HotRestore with Restore Line (HotRestore w/ RL).
It exploits the elastic working set and utilizes restore line
to reduce the TCP backoff duration.

6.2.1 Detailed View of Disruption

We first illustrate the disruption duration consisting of
restore latency and TCP backoff duration in detail. We
setup the VMC with 8 VMs, and apply two representa-
tive network applications: i) Distcc [3] which is a com-

10



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  11

0

1

2

3

4

5

6

7

HotRestore w/ RL
8765432

HotRestore w/o RL

Ti
m

e
(s

ec
on

ds
)

Backoff duration
Restore latency

Working Set Restore
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(a) Disruption under Distcc

0

1

2

3

4

5

6

7

HotRestore w/ RL
8765432

HotRestore w/o RL

Ti
m

e
(s

ec
on

ds
)

Backoff duration
Restore latency

Working Set Restore
1 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

(b) Disruption under Elasticsearch

Figure 7: Comparison of disruption time in the VMC.

pilation tool that adopts client/server architecture to dis-
tribute the tasks across the nodes, and ii) Elasticsearch
[4] which is a distributed, de-centralized search server
used to search documents. The nodes play equivalen-
t role in Elasticsearch. The practical TCP backoff du-
ration is hard to depict unless modifying the guest OS,
therefore, we approximate the value by the difference be-
tween start times of communicating VMs. If the VM is
communicating with multiple VMs, the maximum time
difference will be adopted as the duration. We use NTP
to synchronize the times of physical server, so that the d-
ifference among physical times of servers is within only
a few milliseconds.

Figure 7 compares the detailed disruption duration of
VMs of HotRestore to that of Working Set Restore. The
gray bar illustrates the restore latency, while the red bar
depicts the TCP backoff duration. It can be seen that the
restore latencies of VMs are various and thus cause the
backoff problem. Take Distcc as an example, the laten-
cies of VM2 and VM6 are 5.21 seconds and 6.13 sec-
onds respectively. Since VM2 depends on VM6, hence

the backoff duration of VM2 is 0.92 seconds. It can be
seen that the restore latencies of VMs with Working Set
Restore are much longer than that with HotRestore meth-
ods. The HotRestore w/o RL method reduces the restore
latency by employing a smaller working set size, so that
the backoff duration decreases accordingly. The results
in Figure 7(a) show that the HotRestore w/o RL reduces
the disruption by 54.1% on average compared to Work-
ing Set Restore. The HotRestore w/ RL method reduces
the disruption further. Although there is no significant
decrease on restore latency compared to HotRestore w/o
RL, the backoff is eliminated as a result of the restore
line. Generally, it achieves a 56.7% reduction on dis-
ruption duration compared to Working Set Restore under
Distcc workload.

The disruption under Elasticsearch workload shows
similar results. Compared to Working Set Restore,
HotRestore w/o RL reduces the average disruption du-
ration by 48.6%. It is worth noting that the TCP backoff
appears in HotRestore w/ RL, e.g., the backoff duration
of VM5 and VM7 are 0.1 and 0.12 seconds respectively.
This is because VM4, VM5 and VM7 form a dependency
ring and are given identical working set size to be started
simultaneously. However, due to the fluctuation of disk
IO speed, the practical start times of VMs are differen-
t. In this experiment, VM5 and VM7 start earlier than
VM4, as a result, they suffer from TCP backoff problem.
On average, HotRestore w/ RL reduces the disruption by
53.6% compared to Working Set Restore.

6.2.2 Details on TCP Backoff Duration

The above experiments present an overview of backoff
duration. We can see that some VMs do not experience
TCP backoff, while others suffer from long backoff dura-
tion, e.g., the duration of VM5 is 4.49 seconds under E-
lasticsearch. In this section, we will exhibit the details on
backoff duration, especially for the complicated network
topology as the VMC scales out. We evaluate HotRestore
for a VMC configured with 8, 12, 16 VMs under Elastic-
search workload, and reports the details on VMC backoff
duration. There is no direct metric to measure the back-
off duration for the whole VMC, therefore, we calculate
all the backoff duration between each two communicat-
ing VMs, and report the maximum, minimum, average
and median value.

Figure 8 demonstrates the results on backoff duration.
As expected, HotRestore w/ RL achieves the least du-
ration. Compared to Working Set Restore which incurs
2.66 seconds backoff duration on average, HotRestore w/
RL reduces the average duration to less than 0.07 second-
s. As explained earlier, the duration with HotRestore is
mainly due to the existence of dependency ring as well
as the difference of VMs’ start times. Besides, we can

11



12  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

max min avg med
0

2

4

6

8

10

Ba
ck

of
fd

ur
at

io
n

(s
ec

on
ds

)

Working Set Restore
HotRestore w/o RL
HotRestore w/ RL

(a) 8 VMs

max min avg med
0

2

4

6

8

10

Ba
ck

of
fd

ur
at

io
n

(s
ec

on
ds

)

Working Set Restore
HotRestore w/o RL
HotRestore w/ RL

(b) 12 VMs

max min avg med
0

2

4

6

8

10

Ba
ck

of
fd

ur
at

io
n

(s
ec

on
ds

)

Working Set Restore
HotRestore w/o RL
HotRestore w/ RL

(c) 16 VMs

Figure 8: Comparison of TCP backoff duration.

see that the maximum backoff duration with Working Set
Restore exceeds 10.1 seconds in Figure 8(b). The long
duration may make the application inside the VM expe-
rience a long freeze stage even if the VM actually has
already started. HotRestore solves the problem through
the restore line. As we can see, even the maximum dura-
tion is less than 0.14 seconds in HotRestore. As a result,
the VM after restoration is able to execute without per-
ceivable interruption.

These results demonstrate that HotRestore w/ RL re-
duces the TCP backoff duration to milliseconds and s-
cales well for larger scale VMC. Besides, for low latency
network where the proposed restore protocol is not suit-
able, the HotRestore w/o RL approach can still work and
bound the duration in a few seconds.

It is worth noting that the TCP backoff duration here
is simply calculated by the difference between the s-
tart times of communicating VMs. In practice, however,
the backoff duration increases twofold for each timeout,
making the practical backoff duration of the Working Set
Restore be much larger than the value shown in Figure 8.
In other words, HotResotre would performs much better
than Working Set Restore in practical scenarios.

6.3 Performance Overhead
This part will measure the incurred performance over-
head of HotRestore. The overhead mainly comes from
two aspects. One is the overhead on snapshot. Com-
pared to traditional snapshot that only traces write oper-
ations, HotRestore traces both read and write operations,
so that it incurs extra overhead. Another one is the over-
head after restoration. The demand-paging will trigger
page faults, making the VM exit to VMM for loading the
desired page from disk file.

6.3.1 Overhead during Snapshot

We measure the overhead in terms of the count of traced
pages during snapshot. Table 4 compares the results of
HotSnap (as the baseline shows) and HotRestore. It can

be seen that the increase incurred by HotRestore ranges
from 11.3% to 124%.

Upon a page fault triggered by access tracing, the VM-
M suspends the VM and handles the page fault. The
overhead to handle the fault mainly consists of two part-
s. First, the VM exits to VMM which removes the
read/write protect flag and then resumes the VM. The
exit and entry of VM to VMM takes 38us in our platfor-
m. Second, the VMM saves the traced page into storage
for memory write operation. Saving one page (4K) takes
about 150us on average. Fortunately, tracing the memo-
ry read operations in HotRestore does not require saving
the page. As a result, the extra time during snapshot cre-
ation incurred by tracing read operations is minor. Ta-
ble 5 compares the snapshot creation time under various
workloads. As an example, the total time to save the VM
state in HotRestore increases by 1.3 seconds compared
to that of Baseline under Compilation workload.

Modes Compile Gzip Pi MPlayer MySQL

Baseline 25933 53447 1523 21510 12825
HotRestore 34348 59466 3413 30217 17598

Increase 32.4% 11.3% 124% 40.4% 37.2%

Table 4: Comparison of traced page count.

Modes Compile Gzip Pi MPlayer MySQL

Baseline 85.3 79.5 54.2 72.5 77.3
HotRestore 86.6 81.1 54.4 74.2 78.2

Increase 1.3 1.6 0.2 1.7 0.9

Table 5: Comparison of snapshot duration (seconds).

6.3.2 Overhead after Restoration

We setup Elasticsearch in the VMC configured with 8
VMs. We measure the performance loss in terms of the
response time. Specifically, we fill Elasticsearch with 1

12



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  13

0 20 40 60 80
0.12

0.16

0.20

0.24

0.28

0.32

0.36
R

es
po

ns
e

Ti
m

e(
se

co
nd

s)

Query Cycles

HotRestore
Working Set Restore

Figure 9: Comparison of response time.

million micro-blogs and launch ten threads to query con-
currently. Each query requests different keywords and
acquires 40 micro-blogs. The average response time for
each query is about 0.192s during normal execution.

Figure 9 demonstrates the average response time of
ten threads for continuous queries. As we can see, the
response time with Working Set Restore is long after
restoration. Specifically, the latency of the first query is
0.36 seconds, which is about twice the latency of normal
execution. The reason is as follows: The Elasticsearch
node will handle the query after the associated VM s-
tarts. However, some other nodes are still suspended to
load the working set, thereby causing the backoff among
these nodes. As a result, the requested node cannot re-
ply as fast as that in normal execution with fewer peers,
especially for concurrent queries from ten threads. The
response time decreases for the subsequent queries, due
to the coordination with peers that are resumed recently.
HotRestore shows no significant performance loss. The
requested node can coordinate with peers within a short
period after restoration due to the short backoff duration.
In practice, the average response time with HotRestore is
0.215 seconds for the first six queries, only a little higher
than that of normal execution.

The response time with HotRestore returns to the nor-
mal value from the 7th cycle, while it keeps high until
the 16th cycle with the Working Set Restore approach.
This implies that HotRestore halves the time for Elastic-
search to regain the full capacity. Although the working
set sizes of some certain VMs are revised to be smaller
and thus degrade the performance for the single VM, the
overall performance of entire VMC is improved due to
the elimination of the network interruption.

7 Related Work

7.1 VM Restoration

The idea of fast restore is not new, several approaches
have been proposed to fast restore (or start) the processes
and the operating systems. Recovery Oriented Comput-
ing (ROC) [33] achieves fast recovery of process upon
failures by fine grained partitioning and recursive restart.
Li et al. [29] track the pages touched by applications
during post-checkpoint, and use these touched pages to
restart the processes fast. Windows adopts SuperFetch
[8] and ReadyBoost [7] to accelerate the application and
OS launch times respectively by monitoring and adapting
the usage patterns and prefetching the frequently used
files and data into memory so that they can be accessed
quickly when needed. HotRestore is fundamentally dif-
ferent from these works in that it focuses on the restore
latency of virtual machines, rather than processes or op-
erating systems.

There is not much work on improving VM restore.
The most simple approach is eager restore, which start-
s the virtual machine after all the state including device
state and memory state are loaded [37]. This approach,
obviously, incurs long latency for VMs equipped with
large size memory. Lazy restore [18] reduces the latency
to milliseconds through starting the VM after CPU state
and device state are loaded and loading the memory state
in an on-demand way. It however incurs serious perfor-
mance loss due to large amounts of demand-paging after
restore, especially in the beginning execution after the
VM is rollbacked. Working set restore [39] addresses the
performance issue by prefetching the working set upon
restore, at the cost of only a few seconds downtime. Our
work on a single VM restore shares a similar philology to
working set restore. The difference is, their method em-
ploys working set to reduce the time-to-responsiveness
metric, yet we propose an elastic working set for restor-
ing the virtual machine cluster.

7.2 VMC Restoration

There have been amounts of work about restoring a dis-
tributed system, and the key of them is to guarantee
the consistency of the saved state. Several work create
the global consistent state through coordinated snapshot-
ting approach, so that the system can be rolled back di-
rectly from the saved state [27, 20, 12]. Another field
assumes that the nodes create snapshots independently,
therefore they focus on guaranteeing the global consis-
tency among snapshots upon restore and avoiding domi-
no effect [16, 36, 34]. Several recently proposed snap-
shot systems for virtual machine cluster create the con-
sistent global state [25, 11, 19] when snapshotting, but

13



14  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

make no improvement on restoration. We guarantee the
consistency while the snapshots are being created by our
prior work called HotSnap [14], and our concern within
the paper is to reduce the restore latency as well as the
TCP backoff duration.

Besides, the TCP backoff problem incurred during s-
napshot has received attention recently. VNSnap [25]
saves the memory state in a temporary memory region
and then flushes into disk asynchronously, thereby re-
ducing the discrepancy of snapshot completion times to
reduce the backoff duration. Emulab [11] addresses this
issue by synchronizing clocks across the nodes to sus-
pend all nodes for snapshot simultaneously. Our work
emphasizes on backoff duration upon restoration. By ex-
ploiting the network causal order, we propose a restore
line method to minimize the backoff duration.

7.3 Working Set

Working set captures the notion about memory access
locality. Denning describes which pages should be
swapped in and out of the working set [15]. LRU [31],
CLOCK [23] and CAR [10] are improved methods to i-
dentify which pages should be replaced into the working
set. HotRestore adopts the FAFL queue to record the
traced pages as candidate working set pages, and then
produces the working set according to the desired size.
Besides, several systems adopt the working set to achieve
fast restoration of process [29] or VM [39]. They em-
ploy memory tracing to capture the working set pages
and leverage the sampling approach [38] to estimate the
working set size. HotRestore is different in that it fig-
ures out a hybrid size based on sampling during normal
execution as well as statistic during snapshot, and then
halves the size as the expected working set size. The size
shrink does not impose significant performance loss due
to the well scalability of the elastic working set.

8 Limitations and Future Work

There still exist several limitations in HotRestore. First,
the proposed elastic working set would perform poor for
non-deterministic applications, especially for applica-
tions in SMP virtual machines due to the variable vCPU
scheduling. Other non-deterministic events, as described
in §5.4, will also lead to the divergence of VM execu-
tion after restoration. As a result, the on-demand paging
would occur frequently, and further imposes significant
performance loss. Second, for some applications, e.g.,
long running scientific programs, where fast restore is i-
nessential, HotRestore may incur unnecessary overhead
due to extra read traces during snapshot, given that the
VMC snapshot is frequently created.

Therefore, our ongoing work contain two direction-
s. The first is to analyze the memory traces for non-
deterministic applications in SMP (Symmetric Multi-
Processing) VM for seeking a suitable page replacement
algorithm to build an accurate working set, with the aim
to reduce the amount of page faults as well as eliminating
performance degradation. What’s more, given that snap-
shot is required more frequently than restore, we plan
to make a holistic study on performance overhead with
multiple snapshots along with one restore operations in
real world scenarios, with the aim to find an adaptive s-
napshot/restore policy to minimize the overall overhead
for long running applications.

9 Conclusions

In this paper, we present HotRestore, a restore system
which enables fast restore of the virtual machine cluster
without perceivable disruption. HotRestore employs an
elastic working set to reduce the restore latency without
compromising the application performance, and propos-
es restore line to reduce the TCP backoff duration. The
key insight in restore line is that the start times of VMs
can be revised to match the network causal order of VMs.
We have implemented HotRestore on QEMU/KVM plat-
form. Our evaluation results show that the whole VM-
C can be restored within a few seconds, what’s more,
the applications can regain the full capacity rapidly af-
ter restoration benefiting from the elimination of TCP
backoff. We believe that HotRestore will help improve
system reliability and performance after failure recovery,
especially in the scenarios where failures and restoration
are requied frequently.

Acknowledgements

We would like to thank our shepherd Theophilus
Benson and the anonymous reviewers for their valu-
able comments and help in improving this paper.
This work is supported by China 973 Program under
Grant No. 2011CB302602, China 863 Program un-
der Grant No. 2011AA01A202 and 2013AA01A213,
HGJ Program under Grant No. 2010ZX01045-001-002-
4 and 2013ZX01039-002-001-001, NSFC Program un-
der Grant No. 61202424, 91118008, and 61170294, and
Fundamental Research Funds for the Central Universi-
ties under Grant No.YWF-14-JSJXY-017. Jianxin Li and
Tianyu Wo are the corresponding authors of this paper.

References

[1] Amazon ec2. Http:// aws.amazon.com/ec2/.

14



USENIX Association 	 28th Large Installation System Administration Conference (LISA14)  15

[2] National center for biotechnology information.
ftp://ftp.ncbi.nih.gov/.

[3] Distcc. http://code.google.com/p/distcc/.
[4] Elasticsearch. http://www.elasticsearch.org/.
[5] Mummer. http://mummer.sourceforge.net/.
[6] Mysql. http://www.mysql.com/.
[7] Readyboost. http://en.wikipedia.org/wiki/

ReadyBoost.
[8] Superfetch. http://en.wikipedia.org/wiki/

Windows Vista I/O technologies.
[9] Sysbench. http://sysbench.sourceforge.net/.

[10] S. Bansal and D. S. Modha. Car: Clock with adap-
tive replacement. In Proceedings of USENIX FAST,
pages 187–200, 2004.

[11] A. Burtsev, P. Radhakrishnan, M. Hibler, and
J. Lepreau. Transparent checkpoints of closed dis-
tributed systems in emulab. In Proceedings of Eu-
roSys, pages 173–186, 2009.

[12] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems, 3
(1):63–75, 1985.

[13] P. M. Chen and B. D. Noble. When virtual is bet-
ter than real [operating system relocation to virtu-
al machines]. In Proceedings of the HotOS, pages
133–138, 2001.

[14] L. Cui, B. Li, Y. Zhang, and J. Li. Hotsnap: A
hot distributed snapshot system for virtual machine
cluster. In Proceedings of USENIX LISA, pages 59–
73, 2013.

[15] P. J. Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323–
333, 1968.

[16] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols
in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[17] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-
A. Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in globally distributed storage systems.
In Proceedings of OSDI, pages 1–14, 2010.

[18] R. Garg, K. Sodha, and G. Cooperman. A generic
checkpoint-restart mechanism for virtual machines.
In CoRR abs/1212.1787, 2012.

[19] R. Garg, K. Sodha, Z. Jin, and G. Cooperman.
Checkpoint-restart for a network of virtual ma-
chines. In IEEE International Conference on Clus-
ter Computing, pages 1–8, 2013.

[20] A. P. Goldberg, A. Gopal, A. Lowry, and R. Strom.
Restoring consistent global states of distributed
computations. In ACM/ONR workshop on Paral-
lel and distributed debugging (PADD), pages 144–
154, 1991.

[21] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Sno-

eren, G. Varghese, G. M. Voelker, and A. Vahdat.
Difference engine: harnessing memory redundancy
in virtual machines. Communications of ACM, 53
(10):85–93, 2010.

[22] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Gu-
ruprasad, T. Stack, K. Webb, and J. Lepreau. Large-
scale virtualization in the emulab network testbed.
In USENIX Annual Technical Conference, pages
113–128, 2008.

[23] S. Jiang, F. Chen, and X. Zhang. Clock-pro: An
effective improvement of the clock replacement. In
Proceedings of ATC, pages 323–336, 2005.

[24] X. Jiang and D. Xu. Violin: Virtual internetwork-
ing on overlay infrastructure. In Parallel and Dis-
tributed Processing and Applications, pages 937–
946, 2005.

[25] A. Kangarlou, P. Eugster, and D. Xu. Vnsnap: Tak-
ing snapshots of virtual networked environments
with minimmal downtime. In Proceedings of DSN,
pages 87–98, 2011.

[26] N. Karmarkar. A new polynomial-time algorithm
for linear programming. In Proceedings of STOC,
pages 302–311, 1984.

[27] J. Kim and T. Park. An efficient protocol for check-
pointing recovery in distributed systems. IEEE
Transactions on Parallel and Distributed Systems,
4(8):955–960, 1993.

[28] A. Kivity, Y. Kamay, D. Laor, and U. Lublin. Kvm:
the linux virtual machine monitor. Computer and
Information Science, 1:225–230, 2007.

[29] Y. Li and Z. Lan. A fast restart mechanism for
checkpoint/recovery protocols in networked envi-
ronments. In Proceedings of DSN, pages 217–226,
2008.

[30] X. Meng, V. Pappas, and L. Zhang. Improving
the scalability of data center networks with traffic-
aware virtual machine placement. In Proceedings
of INFOCOM, pages 1–9, 2010.

[31] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
lru-k page replacement algorithm for database disk
buffering. In Proceedings of the ACM SIGMOD,
pages 297–306, 1993.

[32] D. Ongaro, A. L. Cox, and S. Rixner. Scheduling
io in virtual machine monitors. In Proceedings of
VEE, pages 1–10, 2008.

[33] D. Patterson, A. Brown, P. Broadwell, and et al.
Recovery-oriented computing (roc): Motivation,
definition, techniques, and case studies. In Techni-
cal Report UCB//CSD-02-1175, UC Berkeley Com-
puter Science, 2002.

[34] D. L. Russell. State restoration in systems of com-
municating processes. IEEE Transactions on Soft-
ware Engineering, 6(2):183–194, 1980.

[35] B. Schroeder and G. A. Gibson. Understanding fail-

15



16  28th Large Installation System Administration Conference (LISA14)	 USENIX Association

ures in petascale computers. Journal of Physics, 78:
1–11, 2007.

[36] R. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transations on Comput-
er Systems, 3(3):204–226, 1985.

[37] G. Vallee, T. Naughton, H. Ong, and S. L. Scot-
t. Checkpoint/restart of virtual machines based on
xen. In Proceedings of HAPCW, 2006.

[38] C. A. Waldspurger. Memory resource management
in vmware esx server. In Proceedings of USENIX
OSDI, pages 181–194, 2002.

[39] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C.
Barr. Fast restore of checkpointed memory using
working set estimation. In Proceedings of VEE,
pages 534–533, 2009.

[40] I. Zhang, T. Denniston, Y. Baskakov, and A. Garth-
waite. Optimizing vm checkpointing for restore
performance in vmware esxi. In Proceedings of
USENIX ATC, pages 1–12, 2013.

[41] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and
X. Li. Low cost working set size tracking. In Pro-
ceedings of USENIX ATC, pages 17–22, 2011.

16




