
iROW: An Efficient Live Snapshot System for Virtual Machine Disk 

Jianxin Li12, Hanqing Liu2, Lei Cui2, Bo Li12, Tianyu Wo12 
1 State Key Lab of Software Development Environment 

Beihang University 
Beijing, China  

{lijx, libo,woty}@buaa.edu.cn 
 

2 School of Computer Science and Engineering 
Beihang University 

Beijing, China 
{liuhq,cuilei}@act.buaa.edu.cn 

 
 

Abstract—The high-availiablity of mission-critical data and 
services hosted in a virtual machine (VM) is one of the top 
concerns in a cloud computing environment. The live disk 
snapshot is an emerging technology to save the whole state and 
the data of a VM at a specific point of time, and be used for 
quick disaster recovery. However, the existing VM disk 
snapshot systems suffer from long operation time and I/O 
performance degradation problems during snapshots creating 
and managing, and thereby affecting the performance of the 
VM and its services. To address such issues, we designed an 
efficient VM disk snapshot system, named iROW (improved 
Redirect-on-Write). In iROW, a bitmap based light-weight 
index scheme is adopted to replace the existing multi-level 
index tree structure to reduce query cost. Additionally, 
through a combination of Redirect-on-Write (ROW) and 
Copy-on-Demand (COD) schema to avoid extra copy operation 
on the first write after snapshot with Copy-on-Write (COW) 
schema, and the file fragmentation problem caused by ROW 
snapshot after long-term using. Finally, iROW gives a unified 
disk space allocation function by the host machine’s file 
system. We have implemented iROW in qemu-kvm 0.12.5 and 
conducted some experiments. The implementation of iROW 
completely obey the interfaces of the block device driver in 
QEMU, so it is transparent to the upper system or applications 
and original disk image formats can be also supported. The 
experimental results show that iROW has obvious performance 
advantages in snapshot creating and management operations. 
Compared with the existing qcow2 disk image in KVM, when 
the VM disk size is 50GB, and the cluster size is 64KB (the 
default cluster size of qcow2), the snapshot creation and 
rollback time is only about 6% and 3% of original qcow2’s. 
With the increasing of the VM disk size, iROW has more 
performance advantages on snapshot creation and rollback 
operations. In addition, the I/O performance of iROW is better 
than qcow2. When the cluster size is 64 KB, typically the 
iROW’s performance loss is 10% less than qcow2’s, and its 
first write performance after snapshot creation is about 250% 
of qcow2’s. 

Keywords-Cloud Computing; Reliability; Virtual Machine; 
Snapshot; Virtual Disk Image 

I.  INTRODUCTION 
With the development of computer technology and 

information technology, users and businesses are 
increasingly dependent on digital information. The 
requirements of the data storage’s reliability are also 
increased. Especially in special industries like banking, 

electricity, medical care and others, the loss of stored data 
would cause significant loss, or results in serious accidents. 
With the increased complexity of the computer system, its 
design inevitably has some defects. In some special 
conditions, these defects will cause the system failure, and 
result in the loss of important data. Besides, the increased 
complexity of the computer system puts forward higher 
requirements on the users. The users’ misoperation may also 
cause the loss of data. Finally, the Internet is a completely 
open environment. The computer system connected to it may 
crash due to the malicious attacks etc. Therefore effective 
measures are needed to ensure the reliability of data in the 
computer system.  

Usually, the reliability of data relies on backing up 
multiple copies of the data. When the current data are lost or 
corrupted, they can be restored to the pervious copies. Disk 
snapshots technology is an important way of data backup and 
recovery. When they perform the snapshot operations, most 
of the snapshot technologies do not have data copy 
operations. Only the metadata is changed during the snapshot 
operations. So snapshot operation can be completed in a 
short time. 

Virtualization is an essential technology that separates 
computing environment from physical hardware, to support 
the delivery of computing and storage capacity as a service 
in a cloud computing paradigm. Virtual machine can pack 
both the VM’s operation system and its fully configured 
applications together in a VM disk image. There are several 
features and benefits:  Only a disk file is used to preserve 
the whole state, the disk data, and the configuration of a 
virtual machine at a specific point in time;  A VM disk 
snapshot can used as a whole to back up and recover;  The 
VM disk snapshot mechanism is independent of VM’s 
operating system and the internal file system. Therefore, a 
unified snapshot and recovery mechanism can be used on 
different systems. Moreover, a live snapshot method can, not 
only save the VM disk data, but also the running states and 
data of the software inside the VM. So that the VM can be 
reverted to a snapshot moment, and continue to run. This 
greatly improves the reliability and availability of the 
services provided by the VM. 

The VM disk snapshot function is integrated in most of 
the existing system virtualization solutions. However, the 
existing VM disk snapshot mechanisms use high-cost multi-
level tree index structure as their metadata, and use single 
snapshot method, and implement disk space allocation 
function which overlaps with the similar function of the host 
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machine’s file system. Therefore, the creating and managing 
of a VM snapshot will take a long time, which is not suitable 
for continuous cloud service in a virtual machine. Besides, 
these issues also have adverse effect on the normal I/O 
performance of the VM disk. 

The qcow2 image format is one of the disk image 
formats supported by the QEMU processor emulator, which 
used in KVM [1], and it uses a two-level tree index table to 
store its metadata, and some extra I/O operations will be 
make when the first write after snapshot creation. Therefore, 
when the VM disk size is large, performance of qcow2’s 
snapshot key operations will be dramatically reduced. It has 
great performance loss on the first writing operation after 
snapshot creation. As our motivating research goals, two 
experiments results are showed here. Figure 1 shows some 
results found during our experiments, where the time of 
snapshot creation grows dramatically with the increasing of 
VM disk size. When the VM disk size is 50GB, the qcow2’s 
snapshot creation time is over 3 seconds, which seriously 
impacts on the live VM snapshot feature. Figure 2 shows the 
performance loss of qcow2 compared with the raw format. 
The raw is another VM disk format that KVM supports. It is 
actually a “plain” format. The VM disk image addresses of 
the data clusters are identical with the physical addresses of 
these clusters in non-virtualized environment. The raw 
format does not have any metadata, so its I/O efficiency is 
high. However, the raw format does not support snapshot 
function. In Figure 2 “qcow2” and “qcow2-s” denotes the 
performance of qcow2 before and after snapshot creation 
respectively. According to the different VM disk cluster size, 
the performance loss of qcow2 before snapshot is about 
15%~45%, and the performance loss after snapshot is up to 
60%~90%. The performance loss is very obvious.  

 
Figure 1 The snapshot creation time of qcow2 

 
Figure 2 The performance loss of qcow2 

In order to solve the problems of existing VM disk 
snapshot systems, we design a novel high-efficiency VM 
disk snapshot system: iROW. We implement a prototype 
system, based on the virtual block device driver framework 
of KVM. The main contributions of iROW are as follows: 

• On the design of snapshot metadata, iROW uses 
bitmap to replace multilevel tree index structure 
which is commonly used in existing solutions. This 
replacement greatly reduces the amount of metadata, 
so that both the VM disk snapshot key operations 
performance and the VM disk I/O performance 
would be enhanced at the same time. 

• On the selection of snapshot methods, iROW 
combines Redirect-on-Write (ROW) with Copy-on-
Demand (COD). This method not only avoids the 
extra I/O operations of Copy-on-Write (COW) 
snapshot method on the first write after snapshot, but 
also alleviates the file fragmentation problem cause 
by ROW snapshot method after long-term using. 

• On the setting of features, in order to avoid duplicate 
work, iROW does not decide the position of the data 
cluster in the VM disk image, and the disk space 
allocation function still depends on the host 
machine’s file system. Because of supporting of 
sparse files based on host machine’s file system, 
iROW also achieves the gradual growth of the VM 
disk image size with the actual disk usage. 

The efficiency of iROW mainly reflects in the following 
two aspects:  

• The snapshot key operations of iROW are very 
efficient. When the VM disk size is 50GB and 
cluster size is 64KB, the snapshot creation, rollback 
time is less than 6% and 3% of qcow2’s 
respectively. With the increase of VM disk size, 
iROW has more advantages in snapshot creation and 
rollback operation. 

• The iROW’s I/O performance is also better than the 
qcow2’s. When VM disk cluster size is 64KB, the 
iROW’s performance loss is 10% less than qcow2’s 
typically; the iROW’s first write performance after 
snapshot is close to 250% of the qcow2’s; the 
iROW’s worst case I/O rate is 20% higher than the 
worst case of qcow2. 

This paper is organized as follows: In Section II, we 
briefly describe the background and some related work. 
Section III describes the design and implementation of iROW 
in detail. The iROW’s performance evaluation results and 
discussion of existing problems in iROW are presented in 
Section IV. The last section is our conclusion and future 
work. 

II. BACKGROUND AND RELATED WORK 
This section begins with a brief introduction to the most 

commonly used two snapshot methods; then discusses some 
related work, as well as their problems. 
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A. Snapshot Methods 
There are two most commonly used snapshot methods: 

The Copy-on-Write (COW) snapshot and the Redirect-on-
Write (ROW) snapshot [2][3]. 

After the creation of the COW snapshot, on the first write 
to a block, the original data in the block are copied to another 
block, and then the new data are written into the original 
block. The data copying operation introduces extra I/O 
operations, thus the I/O performance of the first write 
operation after snapshot is decreased. This is the main 
problem of the COW snapshot. 

In contrast, after creating a ROW snapshot, on the first 
write to a data block, the original data in the block are 
maintained intact and the write operation is performed 
directly on another block. The ROW snapshot avoids the 
extra I/O operations of the COW snapshot. However, as the 
new data are written to other blocks, the changed data after 
snapshot are discontinuous with the unchanged data, which 
results in the fragmentation of the data. As the system 
running over a long time, the fragmentation will become 
increasingly serious, and thus may result in the degradation 
of the I/O performance.  

B. Related Work and Their Problems 
The Parallax [4][5] is a virtual storage system designed 

for Xen [6]. It uses three-level radix tree to map virtual block 
address to physical block address. The radix tree is a high-
cost structure. A complete radix tree will take more than 
1GB storage space (1 first-level page, 512 second-level 
pages, and 262144 third-level pages, each page is 4KB). 
Although it can be cached in memory, this strategy lacks of 
scalability; if only part of the radix tree is cached, then extra 
I/O operations are needed to read radix tree from disk. The 
I/O performance will be decreased by the extra I/O 
operations. 

In order to solve the problem of high-cost metadata of 
Parallax, SNPdisk [7] replaces radix tree with sparse tree. 
SNPdisk reduces the cost of the metadata storage by the 
merger of index nodes, which makes more metadata can be 
cached in memory. This methods improves the I/O 
performance, however, SNPdisk uses COW snapshot 
method, which inevitably have extra I/O operations on the 
first write after snapshot. 

KVM is another important system virtualization solution 
in Linux environment. It supports multiple VM disk formats, 
qcow2 (QEMU copy-on-write version 2) is the most 
important one. It supports snapshot, compression, encryption 
and others functions. The qcow2 uses two-level index tree 
to map virtual block address to VM disk image address. 
Besides, the qcow2 uses reference-count values to record 
the number of snapshots that share the same data clusters. Its 
architecture is shown in Figure 3. 

The main problems of the qcow2 are as follows: 
• When it performs snapshot key operations, qcow2 

needs update all of the clusters’ reference-count 
values. This decreases the efficiency of its VM disk 
snapshot key operations, especially when the VM 
disk size is large. 

 
Figure 3 The architecture of qcow2’s metadata 

• Due to the large size of its metadata, qcow2 only 
caches part of the index table, which needs 
constantly read index table from the VM disk image. 
This causes the performance loss of the VM disk 
I/O. 

• There are extra I/O operations on the first write after 
snapshot. Therefore, qcow2 has great performance 
loss on the first writing operation after snapshot. 

III. DESIGN AND IMPLEMENTATION 
In order to solve the problems in existing VM disk 

snapshot systems, based on the KVM virtual block device 
driver framework, we design a high-efficiency VM disk 
snapshot system: iROW. Its position is equivalent to qcow2 
and others format in the KVM virtual block device driver 
framework (as shown in Figure 4). It does not have any 
impact on the application that uses the existing virtual block 
device driver. 

iROW replaces the high-cost multi-level tree structure 
with the bitmap. On one hand, this replacement greatly 
improves the snapshot key operations performance; on the 
other hand, it reduces the performance loss of VM disk I/O 
operations. Besides, iROW combines ROW with COD. The 
combination not only avoids extra I/O operation of COW on 
the first write after snapshot, but also alleviates the I/O 
performance degradation cased by data fragmentation due to 
long-term using of ROW. 

A. iROW VM Disk Snapshot System Architecture 
The iROW’s architecture is shown in Figure 5. In Figure 

5, the VM monitor (VMM) runs in root mode; the VM runs 
in non-root mode [9] [10]. When the VM has an I/O request, 
a VMExit is caused. Then the VM’s I/O request is 
intercepted by the VMM. VMM sends this I/O request to the 
general virtual block device driver (Step 1 in Figure 5). 
General virtual block device driver sends the I/O request to 
the iROW driver (Step 2 in Figure 5). The iROW diver 
operates on the VM disk image, and obtains the return value 
or data (Step 3 and Step 4 in Figure 5,). Then the iROW 
driver sends the return value or data to general virtual block 
device driver (Step 5 in Figure 5). VMM begins to execute 
VM code (Step 6 in Figure 5). This is a complete I/O 
simulation procedure. VM does not know how KVM and 
QEMU simulate the I/O, it feels just like to initiate I/O 
requests and obtain data directly on a physical machine. 
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Figure 4 iROW in the KVM  
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Figure 5 The workflow of iROW  

When creating online snapshot, the user initiates the 
savevm command in the QEMU console. Snapshot 
manager first stops the virtual CPU (Figure 5, step 7). Then it 
collects the VM state information, and sends these data to the 
general virtual block device driver (Figure 5, step 8, 9). The 
general virtual block device driver makes the iROW driver 
save the VM state to the VM disk image (Figure 5, step 2, 3), 
and then returns the result to the snapshot manger (Figure 5, 
step 4, 5, 10). After the VM state is successfully saved, the 
snapshot manager initiates the snapshot-create 
command to the general virtual block device driver (Figure 
5, step 9). Then the general virtual block device driver makes 
the iROW driver create a VM disk snapshot (Figure 5, step 2, 
3), and sends the result to snapshot manger (Figure 5, step 4, 
5, 10). After the VM disk snapshot is successfully created, 
the snapshot manager restores the virtual CPU (Figure 5, step 
7). Then the VM resumes the work that has been stopped. 

When creating offline snapshot, the user initiates the 
snapshot –c command in the qemu-img program. The 
procedure of the offline snapshot is the same as the 
procedure of the disk snapshot creation in online snapshot. 

B. iROW VM Disk Image Architecture 
The iROW VM disk image consists of a meta file and 

several snapshots. A snapshot consists of 2 files: a 
bitmap file (btmp file) and a VM disk data file (irvd file). 
The current state of the iROW VM disk also occupies a 
snapshot. Figure 6 illustrates an iROW VM disk image with 3 
snapshots.  

 
Figure 6 The structure of iROW image 

The meta file consists of the meta header and the 
snapshots information. The meta header is used 
to store basic information of VM disk image. The 
snapshots information sequentially stores every 
snapshot’s name, id and others related information. The 
iROW’s snapshot id is a 32-bits unsigned integer, so it can 
have up to 232-1 snapshots (The current state of the VM disk 
occupies a snapshot, which id is fixed to 0). For most 
applications, this can be seen as unlimited number of 
snapshots. 

The btmp file consists of a bitmap and the VM state 
data. The bitmap is used to indicate whether the clusters 
exist in corresponding irvd file. Each cluster in the VM 
disk image is mapped to a bit in the bitmap. The VM 
state data includes the VM memory data, the virtual 
CPU registers data etc. The VM state data is generated 
when online snapshot is created. Offline snapshot does not 
have the VM state data. 

The irvd file is used to store the actual data of the VM 
disk image. The smallest unit of storage is cluster. The 
cluster size can be specified by the user when creating an 
iROW disk image. iROW does not decide the address of the 
data clusters. It just writes the clusters to the same VM disk 
image addresses as the virtual addresses of the clusters. 
Because of host machine’s file system support sparse files, 
iROW also achieves the gradual growth of the VM disk 
image size with the actual disk usage. 

C. iROW Implementation 
Each virtual block device driver in the KVM virtual 

block device driver framework corresponds to a 
BlockDriver structure, which contains more than 30 
function-pointers and other information. These function-
pointers point to the methods that are implemented by the 
specific virtual block driver. Later in this section, we 
describe part of these methods that iROW implemented. 

1) Open Operation 
When it opens the VM disk, iROW first obtains the 

current state pointer form the meta header, and then it 
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loads snapshots information to the snapshot cache. 
The btmp file and the irvd file are opened according to the 
current state pointer. The bitmap of current state is cached 
in bitmap cache. The file descriptors of the btmp file and the 
irvd file are stored in the BDRVIrowState structure. In 
order to reduce the I/O requests and to enhance the VM disk 
I/O performance, the snapshots information and 
bitmap are completely cached in the memory. 

2) Snapshot Create Operation 
When it creates a snapshot, iROW generates a btmp file 

and an irvd file as the new current state. The new current 
state information is added to the snapshot cache. The 
father pointer of the new current state points to the old 
current state. Then the new snapshot information is 
updated to the meta file. At last, the old current state is 
close, and the new current state is opened. The VM disk size 
and cluster size do not affect the file creation time, the meta 
updating operation time and the file opening/closing 
operations time. Therefore, the snapshot creation time of 
iROW is neither affected by the increase of the VM disk size, 
nor the decrease of the cluster size.  

3) Snapshot Rollback Operation 
The iROW snapshot rollback operation is very simple, it 

is just needed to change the father pointer of the current 
state to the rollback target, and clear the current bitmap. 
The VM disk size and cluster size also do not affect the 
snapshot rollback time of iROW. 

4) Snapshot Delete Operation 
Snapshot deletion is the most complex snapshot 

operation of iROW. When it deletes the snapshot, iROW 
needs to merge the disk data from the target snapshot to its 
children snapshots. After the data have been merged, 
corresponding files are deleted from host machine’s file 
system.  Therefore, iROW has some disadvantages in 
snapshot deletion. We will discuss this issue in later section. 

5) Read Operation 
When it receives the read request from the VM, iROW 

first checks the bitmap and determines whether the 
requested data are present in the current irvd file. If the 
requested data are present, then the data are read from 
current irvd file (step 1 in Figure 7). If the requested data 
are not present, then the father snapshots are recursively 
opened according to the father pointer. The data are read 
from father snapshots (Figure 7, step 2).  

Cluster
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Cluster
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Cluster
n

Cluster
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Cluster
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Cluster
n
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Figure 7 The reading operation of iROW 

In order to alleviate the I/O performance degradation 
cause by file fragmentation after long-term use of ROW, 
iROW adds Copy-on-Demand (COD) function. If COD is 
enabled, the data that are read from father snapshot will be 
written to corresponding position in current irvd file 
(Figure 7, step 3). By moderate data redundancy, this method 
reduces the fragmentation of data, which improves the VM 
disk I/O performance. The state of COD is specified by the 
user when the VM disk is created, it also could be changed 
after the VM disk is created. 

6) Write Operation 
When it receives the write request from the VM, iROW 

first determines whether the data are aligned with the cluster 
boundaries, and whether the target clusters are present (as 
shown in Figure 8). If the data are aligned with the cluster 
boundaries, or the target clusters are present, then the data 
can be written to the clusters directly. If the data are not 
aligned, and the target clusters are not present, then iROW 
reads these clusters from the father snapshot, and merges 
them with the data to be written. After the merging, iROW 
writes the whole clusters data to the target clusters.  

IV. EVALUATION AND DISCUSSION 

A. Evaluation 
We conducted our experiments on a DELL Precision 

T1500 workstation with Intel Core i7-860 2.8GHz CPU, 
4GB DDR3 memory, 500G SATAII hard disk. The OS is 
Debian 6. 

1) Snapshot Performance 
We write a script to evaluate the snapshot performance of 

iROW. This script creates a VM disk image with specified 
disk size, cluster size and format. Then the script writes data 
to the VM disk image. When the VM disk is full, a snapshot 
is created. Then the script writes data to the VM disk image 
again until the VM disk is full. Then the VM disk is rollback 
to the previous snapshot. After that, the script writes data to 
the VM disk image until it is full once again. At last, the 
script deletes the snapshot. For convenience, we use TiROW-c, 
TiROW-r and TiROW-d to denote the snapshot creation time, 
rollback time and deletion time of iROW respectively, and 
use Tqcow2-c, Tqcow2-r and Tqcow2-d to denote the snapshot 
creation time, rollback time and deletion time of qcow2 
respectively. The results of these experiments are shown in 
Figure 9, Figure 10, and Figure 11. 
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Figure 8 The relationship between the data buffer and clusters boundaries 
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Figure 9 The snapshot creation time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB 

     
Figure 10 The snapshot rollback time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB 

     
Figure 11 The snapshot deletion time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB 

Figure 9 is the comparison of TiROW-c and Tqcow2-c. 
Figure 10 is the comparison of TiROW-r and Tqcow2-r. Figure 
9 and Figure 10 show that TiROW-c and TiROW-r are 
independent of the VM disk size and the cluster size. 
However, the VM disk size and cluster size have great 
influence on Tqcow2-c, Tqcow2-r. Compared with qcow2, 
when the VM disk size is large or the cluster size is small, 
iROW has obvious advantages in both snapshot creation time 
and rollback time.   In Figure 9-(a) and Figure 10-(a), when 
the disk size is 50GB, TiROW-c is 5.8% of the Tqcow2-c, and 
TiROW-r is only 2.8% of Tqcow2-r. In Figure 9-(b) and Figure 
10-(b), when the cluster size is 0.5KB, TiROW-c is only 0.13% 
of the TiROW-c, TiROW-r is only 0.06% of Tqcow2-r. 

Figure 11 is the performance comparison of TiROW-d and 
Tqcow2-d. When it deletes a snapshot, iROW needs to merge 
the data and delete the corresponding files. So, compared 
with qcow2, iROW has some disadvantages in snapshot 
deletion time. We will discuss this issue in later section. 

2) I/O Performance 

We expand the qemu-io with I/O performance 
evaluation function. qemu-io is the I/O exerciser and 
diagnostic tools of KVM. It is mainly used to check the 
functionality of the virtual block driver. We add some I/O 
evaluation functions to the framework of qemu-io. These 
functions write random data with different block size to the 
VM disk image until the disk image is full. And then, these 
functions read data with different block size from the VM 
disk image. At the same time, these functions record the 
time that the writing and reading operation consumed. In 
order to avoid the influence of the host machine’s system 
cache on the I/O performance, we open the VM disk image 
with O_DIRECT flag. The results of these experiments are 
shown in Figure 12, Figure 13, and Figure 14. 

In Figure 12, “iROW” denotes the performance of iROW 
before snapshot, “iROW-s” denotes the performance of 
iROW after snapshot, “qcow2” denotes the performance of 
qcow2 before snapshot, and “qcow2-s” denotes the 
performance of qcow2 after snapshot. Figure 12 shows that 
the write performance of iROW is better than qcow2’s. It 
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also shows that the write performance of iROW is 
independent of the cluster size. 

Figure 13 shows that the read performance of iROW is 
better than qcow2’s too. iROW caches the most recently 
read cluster, so in Figure 13-(b), the performance of iROW is 
even better than raw’s, when the cluster size is lager than 
the data block size. 

Figure 14 is the comparison of iROW and qcow2 in 
special conditions. Figure 14-(a) is the first write 
performance comparison. The metadata of iROW is much 
simpler than qcow2’s metadata, so the first write 
performance loss of iROW is smaller than qcow2’s. In 
addition, qcow2 has extra I/O operations on the first write 
after snapshot. So the first write performance of iROW is 
much better than qcow2’s after snapshot. Figure 14-(b) is 
the worst case comparison. In Figure 14-(b), “iROW-COD” 
denotes the read performance of iROW when the first I/O 
operation is read after snapshot with the Copy-on-Demand 
enabled; “qcow2-s” denotes the first write performance of 
qcow2 after snapshot. Figure 14-(b) shows that the worst 
case of iROW still superior to the worst case of qcow2. 

3) Actual Disk Usage 
In order to prove the physical disk space that the iROW 

VM disk image takes up can gradually increase with the 
actual disk usage, we designed following experiment: First, 
we create a 10GB VM disk image with specified format 
(iROW or qcow2). Then we install Debian 6 and some 
necessary tools on it. After that, we download, decompress 
and compile the Linux Kernel. During this process, we use a 

script to record the real size of the VM disk image in every 
100 seconds. The results are shown in Figure 15. 

In Figure 15, stage A is the OS installing process; stage 
B is the VM powering up and tools installing process; stage 
C is the Kernel source code downloading and decompressing 
process; stage D is the Kernel compiling process. Figure 15 
shows that the real size of iROW image can gradually 
increase with the actual disk usage; and its real size is almost 
the same as the real size of qcow2 image. 

B. Discussions 
In iROW, the time of a snapshot deletion is longer than 

qcow2 due to the data merge and the file deletions 
operations. However, this cost makes the largest benefits to 
the performance of critical snapshot operations. First, the 
efficient snapshot creation and rollback operations make a 
small impact on the VM and its applications, thereby 
maintaining business continuity in a cloud computing 
environment. Second, the frequency of snapshot creation 
and rollback will be much higher than the frequency of 
snapshot deletion. Third, the snapshot deletion operation can 
be performed in VM idle or non-busy period. Currently, in 
iROW, it has obvious advantages on two critical ones of the 
three snapshot operations, and it also has some advantages 
over qcow2 in I/O performance. Overall, iROW is an 
efficient disk image for snapshot of a VM, and has better 
performance than qcow2, and is able to achieve the 
reliability of the virtualized-based cloud environment. 

     
Figure 12 The normalized write performance: (a) the writing block size is 1MB; (b) the writing block size is 4KB 

     
Figure 13 The normalized read performance: (a) the reading block size is 1MB; (b) the reading block size is 4KB 
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Figure 14 The I/O performance in special conditions: (a) the first write performance; (b) the worst case performance 

 
Figure 15 The real size of iROW and qcow2 image 

V. CONCLUSION AND FUTURE WORK 
The existing VM disk snapshot system solutions have 

some performance penalties on snapshot key operations and 
I/O operations. iROW is designed to solve these problems. 
iROW uses bitmap to replace the high-cost multi-level index 
tree structure, which is commonly used in existing solutions; 
iROW combines redirect-on-write with copy-on-demand; 
iROW gives the disk space allocation function back to the 
host machine’s file system. These measures have enhanced 
both snapshot key operations performance and I/O 
performance of iROW. In addition, because of the host 
machine’s file system supports sparse file, iROW also 
achieve that the VM disk image gradually increases with the 
actual disk usage.  

The experiments show that, compared with qcow2, 
iROW has very obvious advantages in snapshot creation and 
rollback performance. When the VM disk size is 50GB and 
the cluster size is 64KB (the default cluster size of qcow2), 
the snapshot creation and rollback time is less than 6% and 
3% of qcow2’s respectively. In addition, these advantages 
will be more obvious when the VM disk size is larger. The 
experiments also show that the I/O performance of iROW is 
better than qcow2’s. According to the cluster size,  typically 
iROW’s I/O performance loss is 10%~50% less than 
qcow2’s; the first-write operation performance of iROW 
after snapshot is close to 250%~700% of qcow2’s; In the 
worst case, iROW’s I/O performance is 20%~270% higher 
than the worst case of qcow2. The performance of iROW is 
very stable in variety of VM disk size and cluster size.  

We are also working on optimization of iROW such as 
snaspshot delete operation, and system integration into our 
iVIC cloud platform [11]. 
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