
iROW: An Efficient Live Snapshot System for Virtual Machine Disk

Jianxin Li12, Hanqing Liu2, Lei Cui2, Bo Li12, Tianyu Wo12
1 State Key Lab of Software Development Environment

Beihang University
Beijing, China

{lijx, libo,woty}@buaa.edu.cn

2 School of Computer Science and Engineering
Beihang University

Beijing, China
{liuhq,cuilei}@act.buaa.edu.cn

Abstract—The high-availiablity of mission-critical data and
services hosted in a virtual machine (VM) is one of the top
concerns in a cloud computing environment. The live disk
snapshot is an emerging technology to save the whole state and
the data of a VM at a specific point of time, and be used for
quick disaster recovery. However, the existing VM disk
snapshot systems suffer from long operation time and I/O
performance degradation problems during snapshots creating
and managing, and thereby affecting the performance of the
VM and its services. To address such issues, we designed an
efficient VM disk snapshot system, named iROW (improved
Redirect-on-Write). In iROW, a bitmap based light-weight
index scheme is adopted to replace the existing multi-level
index tree structure to reduce query cost. Additionally,
through a combination of Redirect-on-Write (ROW) and
Copy-on-Demand (COD) schema to avoid extra copy operation
on the first write after snapshot with Copy-on-Write (COW)
schema, and the file fragmentation problem caused by ROW
snapshot after long-term using. Finally, iROW gives a unified
disk space allocation function by the host machine’s file
system. We have implemented iROW in qemu-kvm 0.12.5 and
conducted some experiments. The implementation of iROW
completely obey the interfaces of the block device driver in
QEMU, so it is transparent to the upper system or applications
and original disk image formats can be also supported. The
experimental results show that iROW has obvious performance
advantages in snapshot creating and management operations.
Compared with the existing qcow2 disk image in KVM, when
the VM disk size is 50GB, and the cluster size is 64KB (the
default cluster size of qcow2), the snapshot creation and
rollback time is only about 6% and 3% of original qcow2’s.
With the increasing of the VM disk size, iROW has more
performance advantages on snapshot creation and rollback
operations. In addition, the I/O performance of iROW is better
than qcow2. When the cluster size is 64 KB, typically the
iROW’s performance loss is 10% less than qcow2’s, and its
first write performance after snapshot creation is about 250%
of qcow2’s.

Keywords-Cloud Computing; Reliability; Virtual Machine;
Snapshot; Virtual Disk Image

I. INTRODUCTION
With the development of computer technology and

information technology, users and businesses are
increasingly dependent on digital information. The
requirements of the data storage’s reliability are also
increased. Especially in special industries like banking,

electricity, medical care and others, the loss of stored data
would cause significant loss, or results in serious accidents.
With the increased complexity of the computer system, its
design inevitably has some defects. In some special
conditions, these defects will cause the system failure, and
result in the loss of important data. Besides, the increased
complexity of the computer system puts forward higher
requirements on the users. The users’ misoperation may also
cause the loss of data. Finally, the Internet is a completely
open environment. The computer system connected to it may
crash due to the malicious attacks etc. Therefore effective
measures are needed to ensure the reliability of data in the
computer system.

Usually, the reliability of data relies on backing up
multiple copies of the data. When the current data are lost or
corrupted, they can be restored to the pervious copies. Disk
snapshots technology is an important way of data backup and
recovery. When they perform the snapshot operations, most
of the snapshot technologies do not have data copy
operations. Only the metadata is changed during the snapshot
operations. So snapshot operation can be completed in a
short time.

Virtualization is an essential technology that separates
computing environment from physical hardware, to support
the delivery of computing and storage capacity as a service
in a cloud computing paradigm. Virtual machine can pack
both the VM’s operation system and its fully configured
applications together in a VM disk image. There are several
features and benefits: Only a disk file is used to preserve
the whole state, the disk data, and the configuration of a
virtual machine at a specific point in time; A VM disk
snapshot can used as a whole to back up and recover; The
VM disk snapshot mechanism is independent of VM’s
operating system and the internal file system. Therefore, a
unified snapshot and recovery mechanism can be used on
different systems. Moreover, a live snapshot method can, not
only save the VM disk data, but also the running states and
data of the software inside the VM. So that the VM can be
reverted to a snapshot moment, and continue to run. This
greatly improves the reliability and availability of the
services provided by the VM.

The VM disk snapshot function is integrated in most of
the existing system virtualization solutions. However, the
existing VM disk snapshot mechanisms use high-cost multi-
level tree index structure as their metadata, and use single
snapshot method, and implement disk space allocation
function which overlaps with the similar function of the host

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.59

376

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.59

376

2012 IEEE 18th International Conference on Parallel and Distributed Systems

1521-9097/12 $26.00 © 2012 IEEE

DOI 10.1109/ICPADS.2012.59

376

machine’s file system. Therefore, the creating and managing
of a VM snapshot will take a long time, which is not suitable
for continuous cloud service in a virtual machine. Besides,
these issues also have adverse effect on the normal I/O
performance of the VM disk.

The qcow2 image format is one of the disk image
formats supported by the QEMU processor emulator, which
used in KVM [1], and it uses a two-level tree index table to
store its metadata, and some extra I/O operations will be
make when the first write after snapshot creation. Therefore,
when the VM disk size is large, performance of qcow2’s
snapshot key operations will be dramatically reduced. It has
great performance loss on the first writing operation after
snapshot creation. As our motivating research goals, two
experiments results are showed here. Figure 1 shows some
results found during our experiments, where the time of
snapshot creation grows dramatically with the increasing of
VM disk size. When the VM disk size is 50GB, the qcow2’s
snapshot creation time is over 3 seconds, which seriously
impacts on the live VM snapshot feature. Figure 2 shows the
performance loss of qcow2 compared with the raw format.
The raw is another VM disk format that KVM supports. It is
actually a “plain” format. The VM disk image addresses of
the data clusters are identical with the physical addresses of
these clusters in non-virtualized environment. The raw
format does not have any metadata, so its I/O efficiency is
high. However, the raw format does not support snapshot
function. In Figure 2 “qcow2” and “qcow2-s” denotes the
performance of qcow2 before and after snapshot creation
respectively. According to the different VM disk cluster size,
the performance loss of qcow2 before snapshot is about
15%~45%, and the performance loss after snapshot is up to
60%~90%. The performance loss is very obvious.

Figure 1 The snapshot creation time of qcow2

Figure 2 The performance loss of qcow2

In order to solve the problems of existing VM disk
snapshot systems, we design a novel high-efficiency VM
disk snapshot system: iROW. We implement a prototype
system, based on the virtual block device driver framework
of KVM. The main contributions of iROW are as follows:

• On the design of snapshot metadata, iROW uses
bitmap to replace multilevel tree index structure
which is commonly used in existing solutions. This
replacement greatly reduces the amount of metadata,
so that both the VM disk snapshot key operations
performance and the VM disk I/O performance
would be enhanced at the same time.

• On the selection of snapshot methods, iROW
combines Redirect-on-Write (ROW) with Copy-on-
Demand (COD). This method not only avoids the
extra I/O operations of Copy-on-Write (COW)
snapshot method on the first write after snapshot, but
also alleviates the file fragmentation problem cause
by ROW snapshot method after long-term using.

• On the setting of features, in order to avoid duplicate
work, iROW does not decide the position of the data
cluster in the VM disk image, and the disk space
allocation function still depends on the host
machine’s file system. Because of supporting of
sparse files based on host machine’s file system,
iROW also achieves the gradual growth of the VM
disk image size with the actual disk usage.

The efficiency of iROW mainly reflects in the following
two aspects:

• The snapshot key operations of iROW are very
efficient. When the VM disk size is 50GB and
cluster size is 64KB, the snapshot creation, rollback
time is less than 6% and 3% of qcow2’s
respectively. With the increase of VM disk size,
iROW has more advantages in snapshot creation and
rollback operation.

• The iROW’s I/O performance is also better than the
qcow2’s. When VM disk cluster size is 64KB, the
iROW’s performance loss is 10% less than qcow2’s
typically; the iROW’s first write performance after
snapshot is close to 250% of the qcow2’s; the
iROW’s worst case I/O rate is 20% higher than the
worst case of qcow2.

This paper is organized as follows: In Section II, we
briefly describe the background and some related work.
Section III describes the design and implementation of iROW
in detail. The iROW’s performance evaluation results and
discussion of existing problems in iROW are presented in
Section IV. The last section is our conclusion and future
work.

II. BACKGROUND AND RELATED WORK
This section begins with a brief introduction to the most

commonly used two snapshot methods; then discusses some
related work, as well as their problems.

377377377

A. Snapshot Methods
There are two most commonly used snapshot methods:

The Copy-on-Write (COW) snapshot and the Redirect-on-
Write (ROW) snapshot [2][3].

After the creation of the COW snapshot, on the first write
to a block, the original data in the block are copied to another
block, and then the new data are written into the original
block. The data copying operation introduces extra I/O
operations, thus the I/O performance of the first write
operation after snapshot is decreased. This is the main
problem of the COW snapshot.

In contrast, after creating a ROW snapshot, on the first
write to a data block, the original data in the block are
maintained intact and the write operation is performed
directly on another block. The ROW snapshot avoids the
extra I/O operations of the COW snapshot. However, as the
new data are written to other blocks, the changed data after
snapshot are discontinuous with the unchanged data, which
results in the fragmentation of the data. As the system
running over a long time, the fragmentation will become
increasingly serious, and thus may result in the degradation
of the I/O performance.

B. Related Work and Their Problems
The Parallax [4][5] is a virtual storage system designed

for Xen [6]. It uses three-level radix tree to map virtual block
address to physical block address. The radix tree is a high-
cost structure. A complete radix tree will take more than
1GB storage space (1 first-level page, 512 second-level
pages, and 262144 third-level pages, each page is 4KB).
Although it can be cached in memory, this strategy lacks of
scalability; if only part of the radix tree is cached, then extra
I/O operations are needed to read radix tree from disk. The
I/O performance will be decreased by the extra I/O
operations.

In order to solve the problem of high-cost metadata of
Parallax, SNPdisk [7] replaces radix tree with sparse tree.
SNPdisk reduces the cost of the metadata storage by the
merger of index nodes, which makes more metadata can be
cached in memory. This methods improves the I/O
performance, however, SNPdisk uses COW snapshot
method, which inevitably have extra I/O operations on the
first write after snapshot.

KVM is another important system virtualization solution
in Linux environment. It supports multiple VM disk formats,
qcow2 (QEMU copy-on-write version 2) is the most
important one. It supports snapshot, compression, encryption
and others functions. The qcow2 uses two-level index tree
to map virtual block address to VM disk image address.
Besides, the qcow2 uses reference-count values to record
the number of snapshots that share the same data clusters. Its
architecture is shown in Figure 3.

The main problems of the qcow2 are as follows:
• When it performs snapshot key operations, qcow2

needs update all of the clusters’ reference-count
values. This decreases the efficiency of its VM disk
snapshot key operations, especially when the VM
disk size is large.

Figure 3 The architecture of qcow2’s metadata

• Due to the large size of its metadata, qcow2 only
caches part of the index table, which needs
constantly read index table from the VM disk image.
This causes the performance loss of the VM disk
I/O.

• There are extra I/O operations on the first write after
snapshot. Therefore, qcow2 has great performance
loss on the first writing operation after snapshot.

III. DESIGN AND IMPLEMENTATION
In order to solve the problems in existing VM disk

snapshot systems, based on the KVM virtual block device
driver framework, we design a high-efficiency VM disk
snapshot system: iROW. Its position is equivalent to qcow2
and others format in the KVM virtual block device driver
framework (as shown in Figure 4). It does not have any
impact on the application that uses the existing virtual block
device driver.

iROW replaces the high-cost multi-level tree structure
with the bitmap. On one hand, this replacement greatly
improves the snapshot key operations performance; on the
other hand, it reduces the performance loss of VM disk I/O
operations. Besides, iROW combines ROW with COD. The
combination not only avoids extra I/O operation of COW on
the first write after snapshot, but also alleviates the I/O
performance degradation cased by data fragmentation due to
long-term using of ROW.

A. iROW VM Disk Snapshot System Architecture
The iROW’s architecture is shown in Figure 5. In Figure

5, the VM monitor (VMM) runs in root mode; the VM runs
in non-root mode [9] [10]. When the VM has an I/O request,
a VMExit is caused. Then the VM’s I/O request is
intercepted by the VMM. VMM sends this I/O request to the
general virtual block device driver (Step 1 in Figure 5).
General virtual block device driver sends the I/O request to
the iROW driver (Step 2 in Figure 5). The iROW diver
operates on the VM disk image, and obtains the return value
or data (Step 3 and Step 4 in Figure 5,). Then the iROW
driver sends the return value or data to general virtual block
device driver (Step 5 in Figure 5). VMM begins to execute
VM code (Step 6 in Figure 5). This is a complete I/O
simulation procedure. VM does not know how KVM and
QEMU simulate the I/O, it feels just like to initiate I/O
requests and obtain data directly on a physical machine.

378378378

Root
Mode

User Space

Kernel Space
Hard Disk

Driver

Application

General Block Driver Snapshot
Manager

Raw Driver iROW Driver

VMM

Non-root
Mode

Qcow2 Driver

VM

Guest OS

VM
image

Figure 4 iROW in the KVM

Guest OS
(VM) Hard Disk

Driver

General Block Driver Snapshot
Manager

iROW Driver

VMM

VM
Image

(iROW)

VCPU Mem

VMExit VMEntry1

2

3
4

7
10

89

5

6

Figure 5 The workflow of iROW

When creating online snapshot, the user initiates the
savevm command in the QEMU console. Snapshot
manager first stops the virtual CPU (Figure 5, step 7). Then it
collects the VM state information, and sends these data to the
general virtual block device driver (Figure 5, step 8, 9). The
general virtual block device driver makes the iROW driver
save the VM state to the VM disk image (Figure 5, step 2, 3),
and then returns the result to the snapshot manger (Figure 5,
step 4, 5, 10). After the VM state is successfully saved, the
snapshot manager initiates the snapshot-create
command to the general virtual block device driver (Figure
5, step 9). Then the general virtual block device driver makes
the iROW driver create a VM disk snapshot (Figure 5, step 2,
3), and sends the result to snapshot manger (Figure 5, step 4,
5, 10). After the VM disk snapshot is successfully created,
the snapshot manager restores the virtual CPU (Figure 5, step
7). Then the VM resumes the work that has been stopped.

When creating offline snapshot, the user initiates the
snapshot –c command in the qemu-img program. The
procedure of the offline snapshot is the same as the
procedure of the disk snapshot creation in online snapshot.

B. iROW VM Disk Image Architecture
The iROW VM disk image consists of a meta file and

several snapshots. A snapshot consists of 2 files: a
bitmap file (btmp file) and a VM disk data file (irvd file).
The current state of the iROW VM disk also occupies a
snapshot. Figure 6 illustrates an iROW VM disk image with 3
snapshots.

Figure 6 The structure of iROW image

The meta file consists of the meta header and the
snapshots information. The meta header is used
to store basic information of VM disk image. The
snapshots information sequentially stores every
snapshot’s name, id and others related information. The
iROW’s snapshot id is a 32-bits unsigned integer, so it can
have up to 232-1 snapshots (The current state of the VM disk
occupies a snapshot, which id is fixed to 0). For most
applications, this can be seen as unlimited number of
snapshots.

The btmp file consists of a bitmap and the VM state
data. The bitmap is used to indicate whether the clusters
exist in corresponding irvd file. Each cluster in the VM
disk image is mapped to a bit in the bitmap. The VM
state data includes the VM memory data, the virtual
CPU registers data etc. The VM state data is generated
when online snapshot is created. Offline snapshot does not
have the VM state data.

The irvd file is used to store the actual data of the VM
disk image. The smallest unit of storage is cluster. The
cluster size can be specified by the user when creating an
iROW disk image. iROW does not decide the address of the
data clusters. It just writes the clusters to the same VM disk
image addresses as the virtual addresses of the clusters.
Because of host machine’s file system support sparse files,
iROW also achieves the gradual growth of the VM disk
image size with the actual disk usage.

C. iROW Implementation
Each virtual block device driver in the KVM virtual

block device driver framework corresponds to a
BlockDriver structure, which contains more than 30
function-pointers and other information. These function-
pointers point to the methods that are implemented by the
specific virtual block driver. Later in this section, we
describe part of these methods that iROW implemented.

1) Open Operation
When it opens the VM disk, iROW first obtains the

current state pointer form the meta header, and then it

379379379

loads snapshots information to the snapshot cache.
The btmp file and the irvd file are opened according to the
current state pointer. The bitmap of current state is cached
in bitmap cache. The file descriptors of the btmp file and the
irvd file are stored in the BDRVIrowState structure. In
order to reduce the I/O requests and to enhance the VM disk
I/O performance, the snapshots information and
bitmap are completely cached in the memory.

2) Snapshot Create Operation
When it creates a snapshot, iROW generates a btmp file

and an irvd file as the new current state. The new current
state information is added to the snapshot cache. The
father pointer of the new current state points to the old
current state. Then the new snapshot information is
updated to the meta file. At last, the old current state is
close, and the new current state is opened. The VM disk size
and cluster size do not affect the file creation time, the meta
updating operation time and the file opening/closing
operations time. Therefore, the snapshot creation time of
iROW is neither affected by the increase of the VM disk size,
nor the decrease of the cluster size.

3) Snapshot Rollback Operation
The iROW snapshot rollback operation is very simple, it

is just needed to change the father pointer of the current
state to the rollback target, and clear the current bitmap.
The VM disk size and cluster size also do not affect the
snapshot rollback time of iROW.

4) Snapshot Delete Operation
Snapshot deletion is the most complex snapshot

operation of iROW. When it deletes the snapshot, iROW
needs to merge the disk data from the target snapshot to its
children snapshots. After the data have been merged,
corresponding files are deleted from host machine’s file
system. Therefore, iROW has some disadvantages in
snapshot deletion. We will discuss this issue in later section.

5) Read Operation
When it receives the read request from the VM, iROW

first checks the bitmap and determines whether the
requested data are present in the current irvd file. If the
requested data are present, then the data are read from
current irvd file (step 1 in Figure 7). If the requested data
are not present, then the father snapshots are recursively
opened according to the father pointer. The data are read
from father snapshots (Figure 7, step 2).

Cluster
n

Cluster
n+1

Cluster
n+2

Cluster
n

Cluster
n+1

Cluster
n+2

Cluster
n

Cluster
n+1

Cluster
n+2

Snapshot y

Snapshot x

Current

father

father

Data
Buffer

Figure 7 The reading operation of iROW

In order to alleviate the I/O performance degradation
cause by file fragmentation after long-term use of ROW,
iROW adds Copy-on-Demand (COD) function. If COD is
enabled, the data that are read from father snapshot will be
written to corresponding position in current irvd file
(Figure 7, step 3). By moderate data redundancy, this method
reduces the fragmentation of data, which improves the VM
disk I/O performance. The state of COD is specified by the
user when the VM disk is created, it also could be changed
after the VM disk is created.

6) Write Operation
When it receives the write request from the VM, iROW

first determines whether the data are aligned with the cluster
boundaries, and whether the target clusters are present (as
shown in Figure 8). If the data are aligned with the cluster
boundaries, or the target clusters are present, then the data
can be written to the clusters directly. If the data are not
aligned, and the target clusters are not present, then iROW
reads these clusters from the father snapshot, and merges
them with the data to be written. After the merging, iROW
writes the whole clusters data to the target clusters.

IV. EVALUATION AND DISCUSSION

A. Evaluation
We conducted our experiments on a DELL Precision

T1500 workstation with Intel Core i7-860 2.8GHz CPU,
4GB DDR3 memory, 500G SATAII hard disk. The OS is
Debian 6.

1) Snapshot Performance
We write a script to evaluate the snapshot performance of

iROW. This script creates a VM disk image with specified
disk size, cluster size and format. Then the script writes data
to the VM disk image. When the VM disk is full, a snapshot
is created. Then the script writes data to the VM disk image
again until the VM disk is full. Then the VM disk is rollback
to the previous snapshot. After that, the script writes data to
the VM disk image until it is full once again. At last, the
script deletes the snapshot. For convenience, we use TiROW-c,
TiROW-r and TiROW-d to denote the snapshot creation time,
rollback time and deletion time of iROW respectively, and
use Tqcow2-c, Tqcow2-r and Tqcow2-d to denote the snapshot
creation time, rollback time and deletion time of qcow2
respectively. The results of these experiments are shown in
Figure 9, Figure 10, and Figure 11.

Cluster
n

Cluster
n+1

Cluster
n+2

Data
Buffer

Not aligned
with the left

Boundary

Not aligned
with the right
Boundary

Aligned
with the two
boundaries

Figure 8 The relationship between the data buffer and clusters boundaries

380380380

Figure 9 The snapshot creation time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB

Figure 10 The snapshot rollback time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB

Figure 11 The snapshot deletion time of iROW and qcow2: (a) the cluster size is 64KB (the default cluster size of qcow2); (b) the disk size is 1GB

Figure 9 is the comparison of TiROW-c and Tqcow2-c.
Figure 10 is the comparison of TiROW-r and Tqcow2-r. Figure
9 and Figure 10 show that TiROW-c and TiROW-r are
independent of the VM disk size and the cluster size.
However, the VM disk size and cluster size have great
influence on Tqcow2-c, Tqcow2-r. Compared with qcow2,
when the VM disk size is large or the cluster size is small,
iROW has obvious advantages in both snapshot creation time
and rollback time. In Figure 9-(a) and Figure 10-(a), when
the disk size is 50GB, TiROW-c is 5.8% of the Tqcow2-c, and
TiROW-r is only 2.8% of Tqcow2-r. In Figure 9-(b) and Figure
10-(b), when the cluster size is 0.5KB, TiROW-c is only 0.13%
of the TiROW-c, TiROW-r is only 0.06% of Tqcow2-r.

Figure 11 is the performance comparison of TiROW-d and
Tqcow2-d. When it deletes a snapshot, iROW needs to merge
the data and delete the corresponding files. So, compared
with qcow2, iROW has some disadvantages in snapshot
deletion time. We will discuss this issue in later section.

2) I/O Performance

We expand the qemu-io with I/O performance
evaluation function. qemu-io is the I/O exerciser and
diagnostic tools of KVM. It is mainly used to check the
functionality of the virtual block driver. We add some I/O
evaluation functions to the framework of qemu-io. These
functions write random data with different block size to the
VM disk image until the disk image is full. And then, these
functions read data with different block size from the VM
disk image. At the same time, these functions record the
time that the writing and reading operation consumed. In
order to avoid the influence of the host machine’s system
cache on the I/O performance, we open the VM disk image
with O_DIRECT flag. The results of these experiments are
shown in Figure 12, Figure 13, and Figure 14.

In Figure 12, “iROW” denotes the performance of iROW
before snapshot, “iROW-s” denotes the performance of
iROW after snapshot, “qcow2” denotes the performance of
qcow2 before snapshot, and “qcow2-s” denotes the
performance of qcow2 after snapshot. Figure 12 shows that
the write performance of iROW is better than qcow2’s. It

381381381

also shows that the write performance of iROW is
independent of the cluster size.

Figure 13 shows that the read performance of iROW is
better than qcow2’s too. iROW caches the most recently
read cluster, so in Figure 13-(b), the performance of iROW is
even better than raw’s, when the cluster size is lager than
the data block size.

Figure 14 is the comparison of iROW and qcow2 in
special conditions. Figure 14-(a) is the first write
performance comparison. The metadata of iROW is much
simpler than qcow2’s metadata, so the first write
performance loss of iROW is smaller than qcow2’s. In
addition, qcow2 has extra I/O operations on the first write
after snapshot. So the first write performance of iROW is
much better than qcow2’s after snapshot. Figure 14-(b) is
the worst case comparison. In Figure 14-(b), “iROW-COD”
denotes the read performance of iROW when the first I/O
operation is read after snapshot with the Copy-on-Demand
enabled; “qcow2-s” denotes the first write performance of
qcow2 after snapshot. Figure 14-(b) shows that the worst
case of iROW still superior to the worst case of qcow2.

3) Actual Disk Usage
In order to prove the physical disk space that the iROW

VM disk image takes up can gradually increase with the
actual disk usage, we designed following experiment: First,
we create a 10GB VM disk image with specified format
(iROW or qcow2). Then we install Debian 6 and some
necessary tools on it. After that, we download, decompress
and compile the Linux Kernel. During this process, we use a

script to record the real size of the VM disk image in every
100 seconds. The results are shown in Figure 15.

In Figure 15, stage A is the OS installing process; stage
B is the VM powering up and tools installing process; stage
C is the Kernel source code downloading and decompressing
process; stage D is the Kernel compiling process. Figure 15
shows that the real size of iROW image can gradually
increase with the actual disk usage; and its real size is almost
the same as the real size of qcow2 image.

B. Discussions
In iROW, the time of a snapshot deletion is longer than

qcow2 due to the data merge and the file deletions
operations. However, this cost makes the largest benefits to
the performance of critical snapshot operations. First, the
efficient snapshot creation and rollback operations make a
small impact on the VM and its applications, thereby
maintaining business continuity in a cloud computing
environment. Second, the frequency of snapshot creation
and rollback will be much higher than the frequency of
snapshot deletion. Third, the snapshot deletion operation can
be performed in VM idle or non-busy period. Currently, in
iROW, it has obvious advantages on two critical ones of the
three snapshot operations, and it also has some advantages
over qcow2 in I/O performance. Overall, iROW is an
efficient disk image for snapshot of a VM, and has better
performance than qcow2, and is able to achieve the
reliability of the virtualized-based cloud environment.

Figure 12 The normalized write performance: (a) the writing block size is 1MB; (b) the writing block size is 4KB

Figure 13 The normalized read performance: (a) the reading block size is 1MB; (b) the reading block size is 4KB

382382382

Figure 14 The I/O performance in special conditions: (a) the first write performance; (b) the worst case performance

Figure 15 The real size of iROW and qcow2 image

V. CONCLUSION AND FUTURE WORK
The existing VM disk snapshot system solutions have

some performance penalties on snapshot key operations and
I/O operations. iROW is designed to solve these problems.
iROW uses bitmap to replace the high-cost multi-level index
tree structure, which is commonly used in existing solutions;
iROW combines redirect-on-write with copy-on-demand;
iROW gives the disk space allocation function back to the
host machine’s file system. These measures have enhanced
both snapshot key operations performance and I/O
performance of iROW. In addition, because of the host
machine’s file system supports sparse file, iROW also
achieve that the VM disk image gradually increases with the
actual disk usage.

The experiments show that, compared with qcow2,
iROW has very obvious advantages in snapshot creation and
rollback performance. When the VM disk size is 50GB and
the cluster size is 64KB (the default cluster size of qcow2),
the snapshot creation and rollback time is less than 6% and
3% of qcow2’s respectively. In addition, these advantages
will be more obvious when the VM disk size is larger. The
experiments also show that the I/O performance of iROW is
better than qcow2’s. According to the cluster size, typically
iROW’s I/O performance loss is 10%~50% less than
qcow2’s; the first-write operation performance of iROW
after snapshot is close to 250%~700% of qcow2’s; In the
worst case, iROW’s I/O performance is 20%~270% higher
than the worst case of qcow2. The performance of iROW is
very stable in variety of VM disk size and cluster size.

We are also working on optimization of iROW such as
snaspshot delete operation, and system integration into our
iVIC cloud platform [11].

ACKNOWLEDGMENTS
We would also like to thank Shouyu Si, JinSheng Zheng

et al. for their helps. This work is partially supported by
Program for National Nature Science Foundation of China
(No. 61272165. 60903149), China 863 Project (No.
2011AA01A202), National Key Technology R&D Program
(No.2012BAH42B04), and New Century Excellent Talents
in University 2010.

REFERENCES
[1] Kivity, Y. Kamay and D. Laor “kvm: the Linux Virtual Machine

Monitor”, in Proc. Linux Symposium vol. 1, pp. 225-230, 2007
[2] W. Xiao, Q. Yang, “Design and Analysis of Block-Level Snapshots

for Data Protection and Recovery”, IEEE Transactions on Computers,
vol. 58, no. 12, 2009

[3] N. Garimella, “Understanding and exploiting snapshot technology for
data protection”, IBM developer Works, IBM, 2006,
http://www.ibm.com/developerworks/tivoli/library/t-
snaptsm1/index.html retrieved November 8, 2011

[4] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley, N. C.
Hutchinson, and A. Warfield, “Parallax: Virtual Disks for Virtual
Machines”, in Proc. ACM SIGOPS /EuroSys. (EuroSys’08), 2008

[5] A. Warfield, R. Ross, K. Fraser, C. Limpach, S. Hand, “Parallax:
Managing Storage for a Million Machines”, in Proc. USENIX Hot
Topics in Operating Systems, pp. 1-11, 2005

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, “Xen and the art of virtualization”,
in SOSP '03 Proceedings of the nineteenth ACM symposium on
Operating systems principles Pages 164-177

[7] L. Yu, C. Weng, M. Li, and Y. Luo, “SNPdisk: An Efficient Para-
Virtualization Snapshot Mechanism for Virtual Disks in Private
Clouds”, in IEEE Network, vol. 25, pp. 20-26, 2011

[8] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator”, in
USEIX FREENIX Track, 2005

[9] Intel Open Source Technology Center, The Parrallel Processing
Institure at Fudan University. System Virtualization——Principle and
Implementation. Beijing. Tsinghua University Press. 2009

[10] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Vol3B, System Programming Guide Part 2,
2011

[11] Jianxin Li, Bo Li, Tianyu Wo, Chunming Hu, Jinpeng Huai, Lu Liu &.
Lam K.P. (2012). CyberGuarder: A virtualization security assurance
architecture for green cloud computing, Future Generation Computer
Systems(FGCS), 38(2), 379–390. doi:10.1016/j.future.2011.04.012

383383383

