Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

TFHIE (INAAEENATFIENAL DeENYAL @)=

FIGICIS

EEIE EEMEUTING ANE cSEENEE

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Future Generation Computer Systems 29 (2013) 330-340

journal homepage: www.elsevier.com/locate/fgcs ——]

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

CyberLiveApp: A secure sharing and migration approach for live virtual desktop

applications in a cloud environment

Jianxin Li®*, Yu Jia?, Lu Liu®, Tianyu Wo?

2School of Computer Science & Engineering, Beihang University, Beijing, China
b School of Computing and Mathematics, University of Derby, Derby, UK

ARTICLE INFO ABSTRACT

Article history:

Received 24 November 2010
Received in revised form

4 May 2011

Accepted 5 August 2011
Available online 12 August 2011

Keywords:

Cloud computing

Software as a service (SaaS)

Virtual machine

Secure accessing

Live application sharing and migration

In recent years, we have witnessed the rapid advent of cloud computing, in which remote software
is delivered as a service and accessed by users using a thin client over the Internet. In particular,
a traditional desktop application can execute in the remote virtual machines of clouds without re-
architecture and provide a personal desktop experience to users through remote display technologies.
However, existing cloud desktop applications have isolated environments with virtual machines (VMs),
which cannot adequately support application-oriented collaborations between multiple users and VMs.
In this paper, we propose a flexible collaboration approach, named CyberLiveApp, to enable live virtual
desktop application sharing, based on a cloud and virtualization infrastructure. CyberLiveApp supports
secure application sharing and on-demand migration among multiple users or equipment. To support VM
desktop sharing among multiple users, we develop a secure access mechanism to distinguish their view
privileges, in which window operation events are tracked to compute hidden areas of windows in real
time. A proxy-based window filtering mechanism is also proposed to deliver desktops to different users.
To achieve the goals of live application sharing and migration between VMs, a presentation redirection
approach based on VNC protocol and a VM cloning service based on the Libvirt interface are used. These
approaches have been preliminary evaluated on an extended MetaVNC. Results of evaluations have
verified that these approaches are effective and useful.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the Internet has become a data and computing
center, with a large number of applications, and ubiquitous
equipment. New Internet-based computing paradigms, e.g., cloud
computing [1,2], have emerged, aiming to bring large-scale
computing, storage, and data service resources together to build a
virtual computing environment. These paradigms provide simple
and transparent approaches that enable effective sharing and
utilization applications over the Internet.

In the early personal computing era, to use software, users
needed to install it under a granted license. This traditional method
suffers several limitations as the software has increased both in
amount and number of categories. First, software users need to
deal with many complex tasks in terms of software installation,
configuration, updating, and even troubleshooting. Besides, soft-
ware which is dependent on their respective host operating sys-
tems may face compatibility issues. Normal users are thus loaded

* Corresponding author.
E-mail addresses: lijx@act.buaa.edu.cn, lijianxin@gmail.com (J. Li),
jiayu@act.buaa.edu.cn (Y. Jia), Lliu@derby.ac.uk (L. Liu), woty@act.buaa.edu.cn
(T. Wo).

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.001

with an extra burden. In contrast, the concept of software as service
(SaaS) [3] that emerged with cloud computing has been promoted
by many companies, such as Amazon and Google. With SaaS, things
become simpler. Software can be installed into VMs with easier
encapsulation and secure isolation. Users could access software
on demand through the Internet without worrying about main-
tenance issues. There are two approaches to achieve these goals.
One is to redevelop software (e.g., GoogleDoc) based on Web tech-
nologies. This not only requires much extra work, but also leads to
compatibility problems on various browsers. The other approach
is based on desktop virtualization, which separates the presenta-
tion and execution of applications, and provides a transparent way
to deliver an application-based remote virtual desktop. Currently,
a virtual desktop can be delivered based on remote display pro-
tocols, such as VNC (Virtual Network Computing) [4,5], and RDP
(Remote Desktop Protocol) [6]. These protocols generally provide
methods for remote virtual desktop accessing, so that users can log
into a VM and operate on the desktop.

Over the Internet, secure collaboration among users and
equipment is an important requirement [7], and, in particular,
user terminal equipment shows increasing mobility. In a cloud
computing environment, applications are executed in VMs.
Therefore, to provide a novel flexible collaboration service among

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340 331

live virtual desktop applications (a live application in short) is
the focus of our work. There are some new scenarios for live
application sharing in a single VM or among multiple VMs. In
a single VM, the collaboration scenarios can be supported based
on shared desktops. For example, in a remote teaching system,
desktop sharing enables the instructor and students to operate
on the same view. However, a traditional way for remote desktop
sharing is to simply share the desktop login account and password,
which may induce inconvenience and insecurity. In a cloud, a
virtual machine monitor (e.g., KVM) only provides a coarse-
grained access control in VM-level granularity (e.g., Qemu VNC
implementation). This brings a disadvantage that authorization
only has two possible results: success or failure, and it means that
users may either all have complete operation rights with poor
security and privacy protection, or cannot concurrently access the
desktop at all. In particular, it is impractical to share the whole
desktop including users’ private windows. Thus, a fine-grained
access control mechanism at window-level granularity is required
to provide security and privacy protection.

Example 1. Three applications (document editing, image viewing,
and chatting) are running on a VM owned by user A. A wants
to share the desktop with all these applications with user B, but
wants to block input from B’s keyboard and mouse. A also gives
the authority of viewing the pictures on his virtual desktop to user
C, but does not want to show C the document editing window and
the chatting window.

In the traditional approach for application sharing among mul-
tiple VMs, when a user needs to share an application and related
data with other users, binary copies of the application are gen-
erated. Users may have to endure a long-time installation and
configuration process, which may terminate due to system in-
compatibility failures. In a cloud computing environment, this can
be easily handled through presentation redirection technologies
among application desktops or an application data clone in the
cloud.

Example 2. In a virtual machine environment, user A is operating
a desktop with a drawing application window on it. After finishing
his/her part of the drawing, A intends to let user B continue with it,
which means that A needs to migrate the application window to B’s
desktop. While user C is interested with this drawing application
and the part drawing that user A has finished, C hopes to have a
complete copy of this application and continue the drawing, which
means that user A has to give a clone of the application and user
data to user C.

To meet the above requirements, we have designed a live
virtual desktop application sharing and migration system, named
CyberLiveApp. The major contributions are as follows.

(1) Multi-user secure application accessing in a single VM. To en-
able secure live application sharing and collaboration among dif-
ferent users, we design a multi-user secure accessing mechanism
at application-window-level granularity. A VM owner can config-
ure desktop sharing policies and use a proxy to filter useless desk-
top windows.

e Multi-user secure desktop accessing approach. Considering the
VM security sharing and collaboration needs, we design and
implement a multi-user secure accessing approach based on
MetaVNC, extend the RFB protocol to support multi-user au-
thentication, and provide the functionality of user customized
view.

e Window operation event tracking and real-time hidden area com-
putation approach. As the access control objects, windows gen-
erally overlap each other and may change dynamically upon

events such as resizing, minimizing, maximizing, moving, and
so on. We first track the events which affect the layout of mul-
tiple windows, and design a real-time hidden area computa-
tion approach to extract a permitted desktop area on a virtual
desktop.

e Proxy-based window filtering mechanism. In the existing remote
control software, access control mechanisms are generally in a
desktop level, which is a coarse-grained mode, and cannot spec-
ify the detailed windows. We provide a desktop view proxy for
desktop delivery among different users. This proxy calculates
permitted desktop areas and clips hidden areas based on the
VM owner’s specific security policy.

(2) Application sharing and migration among multiple VMs.
To enable collaborations among multiple VMs, we design a
live application sharing and migration mechanism. Through
presentation streaming redirection and VM cloning technology,
an application can be easily shared or migrated. We also design
an application state maintaining mechanism during application
sharing and migration.

e Presentation streaming redirection approach. Via live application
presentation streaming, users can subscribe to software ser-
vices and access the virtual desktop. In a cloud environment, all
VMs are located in the same network. Due to the encapsulation
and migration abilities of the VM, and the favorable commu-
nication bandwidth among the hosts, we achieve the sharing
and migration of live applications though redirection of appli-
cation presentation streaming among different clients. During
the migration and sharing process, a VNC connection on a cer-
tain client side can be easily created or closed.

e Application state maintaining mechanism. Ensuring the consis-
tency of all application states during application sharing and
migration is a critical problem. It means all users involved
should get the same view on a shared application, including the
application configuration and all user data (stored in both disks
memories). During application sharing, a target user should get
a complete copy of the application. We achieve this by cloning
the VM in which the target application is running, and design a
state maintaining mechanism to coordinate the communication
sequences among users.

e Virtual desktop application sharing and migration protocols.
Considering the inflexible application copy and desktop sharing
under the traditional desktop mode, we design two protocols
for virtual desktop application sharing and migration. In the
protocols, we design a desktop session management approach
based on inter-process communication. With the protocols,
clients and servers can communicate via SOAP messages, and
application sharing is achieved based on VM cloning.

(3) All approaches mentioned above have been implemented
in CyberLiveApp based on extended MetaVNC and the virtual ma-
chine monitor KVM. Furthermore, we have performed simulations
to verify that the approaches are effective and useful.

The rest of this paper is organized as follows. We discuss the
requirements for live applications in Section 2. Section 3 presents
the design of CyberLiveApp, the architecture, and protocols. We
elaborate implementation experiences in Section 4. The related
work is discussed in Section 5. Finally, we conclude the paper in
Section 6.

2. Requirement analysis

In a VM, when a user wants to share applications on his/her
virtual desktop with other users, the basic requirements for
CyberLiveApp are summarized as follows.

Requirement 1: Providing a multi-user accessing mechanism,
and controlling viewable desktop areas at application window
granularity.

332 J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

Privacy
Document

Privacy
Document |

/ Input !
) ‘ Disabled Disabled

UserC

Fig. 1. A scenario of secure remote access to a single VM from multiple users.

e The extraction of application windows. For the convenience of
administrators to assign browse permissions for different users,
CyberLiveApp extracts all the windows from the operating
system (0S), and stores them in a list. It first gets the handlers
of all the windows on the desktop, then obtains the processes
they belong to, and finally extracts the names of the processes.

e Hiding specific application windows. CyberLiveApp selects pri-
vate windows and calculates the hidden area related to these
windows in accordance with the sharing policies.

e The blocking of keyboard and mouse events. Through intercepting
keyboard and mouse events of different users, the server side of
CyberLiveApp decides whether or not to block the keyboard and
mouse input events.

Among multiple VMs, when a user wants to copy or migrate

applications on a virtual desktop, the source and the destination
Table 1 of application sharing or migration should be specified. As shown
Permission matrix for multiple users. in Fig. 2, in the VM pool, user A has two VMs running App1 and

ACD see picture Office word MSN Mouse &

App?2, respectively. User A can connect to the virtual desktop to
view App1 and App2 through a notebook computer (Client1). When

browser keyboard input ; X g .
user A leaves, he/she can migrate App1 to his/her mobile terminal
g‘s"gr";f’q z z z ?\{1 (Client2). User B is very interested in App2, and user A can easily
User C v N N N send this application to user B’s client (Client3).

The key technologies of live application sharing and migration

among multiple VMs include the following.

Requirement 2: Providing the capability to enable/disable input
devices such as the keyboard and mouse. For instance, some users
are allowed to browse some windows but not to operate or edit
them.

Requirement 3: Preventing a third party from eavesdropping
on the content of desktop during transmission, i.e.,, to ensure
confidentiality of transmitted context though an encrypted tunnel.

As shown in Fig. 1, there are three users connecting to the same
VM to view its virtual desktop, but their permissions are different.

Table 1 is an example of a permission matrix. User A shares
all the windows with user B, but does not permit B to operate
the windows via his/her keyboard or mouse. User A also shares
the desktop with user C after hiding the window areas of the text
editing and chatting programs. User C is also not allowed to operate
A’s desktop.

CyberLiveApp achieves the display of remote desktop based on
MetaVNC. Some key technologies are as follows.

e Redirection of application presentation streaming among multiple
client terminals. In a cloud environment, all applications are
maintained in a VM pool, where the virtual desktops are
delivered to client terminals through VNC or RDP protocols.
In the case of application migration or sharing, application
windows can be redirected to a new client terminal.

e Management of VNC connections on the client side. CyberLiveApp
achieves the goal of remote desktop access based on MetaVNC.
During the phase of application sharing and migration, an inter-
process communication technology is applied on each client
to automatically create/close a specified VNC connection, thus
achieving the redirection of application presentation streaming.

e Application states maintaining. CyberLiveApp regulates the
communication sequence and maintain the consistency of the
applications. Two protocols have been designed for virtual
application sharing and migration, which will be introduced in
Section 3.2.1.

e Secure access control for multiple users. The virtual desktop can 3. Design of CyberLiveApp

be accessed by multiple users. Every user has a customized

view, and can connect to the virtual desktop in a secure way. 3.1. Secure sharing of a single VM desktop among multiple users

e Configuration of sharing policy among users. The virtual desktop
owner can specify policies for its applications, and configure the

Fig. 3 shows the architecture of secure desktop sharing for

permitted users and their permissions as shown in Table 1. multiple users. For every VM owned by a user, the display

Application A Migration
between user A’s two clients

Application B Sharing

UserA ‘stwo !
Clients~=2_"

“(.:Iient 1

from client1 to client 3

UserB s
Client

Client3

Fig. 2. A scenario of live application sharing and migration between deferent VMs.

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340 333

RFB [/

VNCViewer

uoesnuaLINY

VNCViewer

4

ajehoeAld

RFB i

.

CyberLiveApp@Server Side \

Fig. 3. Architecture of secure desktop sharing for multiple users.

of running applications is delivered to the vncViewer on the
client sides through a vncServer installed in the VM. The basic
procedure of secure desktop sharing among multiple users is as
follows.

1. Extraction of application windows in the operating system. To en-
able administrators to assign application permissions to users at
window granularity, CyberLiveApp needs to extract all related
windows from the operating system. First, CyberLiveApp gets
all of the window handlers on a desktop. Second, CyberLiveApp
uses the window handlers to obtain related process handlers
which the windows belong to, by which we can get the applica-
tion process names. Finally, CyberLiveApp creates an available
application list to users for making security policies.

2. Policy configuration on CyberLiveApp@Server side. The owner of
the virtual desktop creates a list of those who are allowed to
access his/her desktop and assigns permissions. The policy is
de facto an access control list. The policies include two types —
one is a permit policy which defines the windows that a user
can access, and the other is a forbid policy which defines the
windows that a user cannot access. When a vncServer runs
in the OS, you can right-click the MetaVNC icon to pop-up a
menu. When one chooses Properties menu, some configu-
ration options are shown on the tabs, and we add two extra tabs
on the MetaVNC options dialog to support such configuration.

3. Authentication of requested users. When a user wants to ac-
cess the remote virtual desktop, He/She will first launch the
vncViewer to send a connection request to the vncServer
though the RFB protocol. The authentication module will au-
thenticate the identity of the requesting user based on the lo-
cal policy database. If the user is authenticated and acquires the
permissions, the vncServer will build a connection with the
vncViewer.

4. The PrivacyGate module functions. In current MetaVNC func-
tions, a vncClient object is created when the vncServer
connection is created. Once some events occur on the server
desktop, the vncServer will deliver the updated desktop to
every vncClient. Therefore, each client will get the exact
same desktop view. In order to allow each user to have a cus-
tomized view, the vncServer works on the proxy mode to
hide some specified windows according to the policies. The
significance of our design is a breakthrough in the current
MetaVNC structure. A PrivacyGate is used to send the desk-
top to each vncClient, which means that, when the server
desktop is changed, it will update the desktop view though a
PrivacyGate module based on the permit policy or deny pol-
icy. The PrivacyGate module will hide the window area for
which the corresponding user has no browsing permission, and
then deliver the filtered desktop view to every vncViewer.

5. Hiding specific application windows of PrivacyGate. In order to al-
low every user to have an independent view, the vncServer
needs to hide the specified windows according to the policy.

First, CyberLiveApp gets the names of the invisible windows

which the administrator has configured for the user. Through
this name, CyberLiveApp calls a query function to obtain the
handlers of the application window and then gets rectangle area
of this window. Second, this rectangle area is added into the
hidden area, which could be a simple rectangle or a complex
polygon. When setting the hidden area, some overlapped areas
with the hidden windows belonging to the permitted top-level
windows should be shown.

6. Blocking input from keyboard and mouse at PrivacyGate. Since
some users are permitted to only browse, not operate, a desk-
top, CyberLiveApp blocks input of keyboard and mouse from
these users. If the input variable state is “DISABLE’’, the server
will block the client’s inputs, and the user can only view the
desktop windows, but cannot operate the server’s windows. If
the input variable is “ENABLE”’, the user’s inputs from the re-
mote client will be handled and responded normally. We con-
trol the input operations through the Windows hook function,
and it intercepts and processes the requests to decide whether
to forward the input events.

3.2. Application sharing and migration among multiple VMs

To realize remote application access in a cloud, we use the
VNC protocol to transfer the virtual desktop of a remote VM.
The VNC protocol works at the buffer frame layer and supports
the remote access to graphical user interfaces, and the mouse
or keyboard inputs can be transferred to the remote application,
thus achieving a transparent access to the applications. In such
a presentation streaming-based software delivery mode, when
a client wants to migrate or share an application to another
client, the presentation streaming of this application should be
redirected, and the corresponding VM will be cloned in the
case of application sharing. Based on these considerations, we
have designed the architecture for live application sharing and
migration (shown in Fig. 4). The key components are as follows.

e Client Controller: With a modified vncViewer to display ap-
plication windows from multiple VM machines, the Client
Controller manages multiple VNC connections between the
vncViewer and vocServers. Using an inter-process comimu-
nication technology, the Client Controller can close or create a
specified VNC connection.

e Server Controller: This maintains information of all live users and
applications in the VM pool. This component provides a unified
management and processing of all clients’ requests, which
includes application presentation streaming, and application
sharing and migration service.

e VM Manager: This provides functionalities of monitoring,
stopping, cloning, or restarting a specified VM with running
applications. The VM Manager receives notifications from the
Server Controller to clone a VM or manage the VM pool.

334 J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

LiveApp@
Client

Client
Controller

4

I VNCViewer

Controller Manager

{====) MessageFlow «—— Control Flow

Fig. 4. Architecture of application sharing and migration among multiple VMs.

Table 2
Definitions of all the state variables.
App state Meaning
vl NORMAL
v2 SHARE
v3 DISCONNECT
v4 MIGRATE
v5 CLONE

Table 3
Application sate transition during migration.

No s = (vq, v2) Description

1 (v1, v3) Client1 has no request

2 (v4, v3) Client1 sends a migration request to Client2

3 (v4, v4) Client2 accepts the migration request

5 (v3,v1) Client1 closes the application connection, and

Client2 connects to it

3.2.1. Application state

In CyberLiveApp, the Server Controller is permitted to identify
all the clients’ requests and capable of responding to them by
sending control messages to every Client Controller, while the VM
Manager manages multiple VM instances in a VM pool. During the
phases of application migration and sharing, application states or
messages may change frequently. Therefore, we use a state tuple to
ensure the consistency of various application and VM information.

The Server Controller maintains a table of states of all virtual
applications. When a client sends a request to the application, the
Server Controller updates its state. We use the state symbol v to
denote a requested state to the application. All the state variables
are defined in Table 2.

The v field value of an application is one of the five types at one
time. When an application’s op = ‘NORMAL’, that means there is
no shared or migration process for this live application. During the
procedure of application sharing and migration, we use a tuple s to
describe application states between two clients:

s = (vq, v2),

where v, denotes the application state that a client requests, and
vy is the application state that another client receives. During the
procedure of application migration and sharing, an application’s
state will be transferred according to order as shown in Tables 3
and 4.

We have implemented a SOAPServer in the Server Controller,
which receives SOAP messages from the Client Controller and
updates the state of application.

3.2.2. Virtual desktop application sharing and migration protocols
When a Client Controller requests to migrate or share a live
application, two corresponding protocols are designed to achieve

Table 4
Application sate transition during sharing.
No s = (v, v2) Description
1 (v1, v3) Client1 has no request
2 (v2, v3) Client1 sends a sharing request to Client2
3 (v2, v2) Client2 accepts the sharing request
4 (v2, v5) VM Manager clones this application, and another
instance will be started
5 (v1, v3) Client1 returns its initial state as order 1

LiveApp@VM Pool
& Server
Q“\ Controller
‘?quf

4.Migration
Finalization

5.Migration
Complement

LiveApp@Client1

LiveApp@Client2

Client

Client

Controller Controller
6.Connection 3. Connection|
Close Create
VNCViewer VNCViewer

Client1

Client 2

Fig. 5. Application migration protocol.

these goals. Several steps are taken to complete the migration or
sharing, as shown in Figs. 5 and 6.

The steps of application migration are as follows.

Step 1: Client1 — Sever Controller: {AppName, MigrationSou-
rce, MigrationDes}. Client1 sends a migration request to the Server
Controller with the AppName, MigrationSource, and MigrationDes.
In CyberLiveApp, all connected clients first register in the Server
Controller, so Client1 can choose the destination from the client
list on the LiveApp@Client side.

Step 2: Sever Controller — Client2: {AppName, VMInfo, Migra-
tionSource, MigrationDes}. Client2 gets a migration notification
from the LiveApp@VM Pool side, and the VM IP address and VNC-
Server port are enclosed in VMInfo, so the VNCViewer can con-
nect to a remote VNCServer to view the application. Sometimes,
Client2 does not have a public IP address (e.g., it is located in a
local network), so the Server Controller cannot initialize a con-
nection to Client2. In CyberLiveApp, we can change the mode of
Step 2 through actively querying the Server Controller at a certain
interval.

Step 3: Client Controller@Client2 — VNCViewer@Client2 : {VM-
Info}. Client2’s Client Controller creates a new Client2’s VNCViewer
connection to the remote VNCServer running on the VM, and the
VNCServer will also close the connection with Client1. Therefore,
the presentation streaming of Client1 can be redirected to Client2,

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340 335

LiveApp@VM Pool
o VM
op VM oioger-;--o
VM1 Manager PP

4.Clone VM T l 5.VM Info====-~

Server
Controller

LiveApp@Client1 LiveApp@Client2

Client
Controller

7. Connectio
Create

Client
Controller

VNCViewer VNCViewer

Client 1

Client 2

Fig. 6. Application sharing protocol among multiple VMs.

and the application view and data are exactly the same due to there
being no change in its running environment.

Step 4: Client2 — Server Controller: {MigrationFinal}. Client2
sends a MigrationFinal message to the Server Controller.

Step 5: Server Controller — Client1: {MigrationComplement}.
The Server Controller updates the meta information of VMPool, and
sends a MigrationComplement message to Client1.

Step 6: Client Controller@Clientl — VNCViewer@Client1:
{VMinfo}. Client1’s Client Controller clears the connection record
of Client1’s VNCViewer, and shows a migration success dialog on
Client1.

The steps of application sharing are as follows.

Step 1: Client1 — Server Controller: {AppName, SharingSource,
SharingDes}. Client1 sends an application sharing request to Server
Controller with the AppName, SharingSource, and SharingDes. In
CyberLiveApp, all connected clients first register in the Server
Controller, so Client1 can choose the destination from the client
list on the LiveApp@Client side.

Step 2: Server Controller — Client2: {AppName, SharingSource,
SharingDes}. Client2 gets a sharing notification from the LiveApp@
VM Pool side. Sometimes, Client2 does not have a public IP address
(e.g. itislocated in alocal network), so the Server Controller cannot
initialize a connection to Client2. In CyberLiveApp, we can change
the mode of Step 2 through actively querying the Server Controller
at an interval.

Step 3: Client2 — Server Controller: {CloneRequest}. Client2
sends a clone request to the Server Controller after it accepts the
sharing message from Client1.

Step 4 & Step 5: Server Controller — VMManager: {VMClone,
VMInfo}. The Server Controller sends a VM clone request to the
VMManager, and the VMManager clones a VM with the Libvirt
command.

Step 6: Server Controller — Client2: {VMInfo}. The cloned VM
IP address and VNCServer port are enclosed in VMiInfo, so the
VNCViewer can connect to a remote VNCServer to view the
application.

Step 7: Client Controller@Client2 — VNCViewer@Client2 : {VM-
Info}. Client2’s Client Controller creates a new Client2’s VNCViewer
connection to the remote VNCServer running on the cloned VM.
Therefore, Client2 can view the duplicated application like Client1,
and the initial application view and data are exactly the same.

Step 8: Client2 — Server Controller: {SharingFinal}. Client2
sends a SharingFinal message to the Server Controller.

Step 9: Server Controller — Client1: {SharingComplement}. The
Server Controller updates some meta information of VMPool, and
sends a SharingComplement message to Client1, and Client1 will
unlock its interaction.

In terms of application sharing, we intend to provide a com-
pletely duplicated application for the two clients. In CyberLiveApp,
this requirement is met by cloning the VM in which the application
runs. We will discuss the design and implementation of VM cloning
in a later section. When a Client Controller sends a VM cloning re-
quest to the Server Controller, the latter will send the VM id to
the VM Manager, who will return the new VM IP address after the
cloning completes. In this new cloned VM, all the disk and memory
data are the same as the original one, thus providing a duplicated
application view.

4. System examples and simulations

Currently, we have implemented a CyberLiveApp prototype
system, and verified its viability through some evaluations. The
core remote display protocol is based on the RFB implementation
of MetaVNC 0.6.6.

4.1. Implementation experience

4.1.1. Secure sharing of a single VM desktop among multiple users

The MetaVNC allocates an unoccupied slot as the ClientID
for the arrived client request according to the array vncClient
*m_clientmap [MAX_CLIENTS]. Then, a vncClient object
will be initialized for this connection, and its attributes are set
according to the passed parameters. After that, MetaVNC calls
the vncClient: : Init method to pass the clientID instance
pointer. Finally, this user will be added into the unauthorized
user list of vncServer through m_clientmap[clientid]=
client.

(1) Multi-user authentication

In the authentication entry function vhcServer:: Authen-
ticated (vncClientId clientid) of MetaVNC, it first gets
the vncClient object from the unauthorized list, and removes
it from the unauth 1list. If the user is the first vncServer
client, a vincDesktop object is created by calling m_desktop->
Init(this). Next, it allocates a vicBuffer *buffer = new
vncBuffer (m_desktop), and sets this buffer by calling vnc-
Client: :SetBuffer to add this user into auth list.

The multi-user authentication feature is implemented in
the vncClient. cpp file of the MetaVNC project. There are
two classes named vncClient and vncClientThread in
vncClient.cpp. vncClient is used to send an updated im-
age to the client while vncClientThread is the server’s ser-
vice thread which is used to receive messages from the client. The
authentication function is implemented in vncClientThread
because there are lots of interactions with the client. Cy-
berLiveApp implements the authentication function in BOOL
vncClientThread: :InitAuthenticate(). We added a new
security type named rfbSecTypeMultiUser, and it will be used
if the client supports this security type; otherwise, the default au-
thentication method will be used. In the new authentication pro-
cess, the client returns the challenges and username to the server.
When the server receives this username, it checks whether this
user exists. If so, the server compares the received password
hash with the hash value stored locally. If the two usernames
and passwords match, the authentication is successful, then the
client and the server will further negotiate to prepare for sending
the remote desktop.

(2) Proxy-based window filtering

In the protocol of MetaVNC, the client thread in vncServer
is used to receive requests from the clients and send update
information to them, and this is one of the most predominant
functionalities of vncServer. The vncClient class is respon-
sible for sending data, which is implemented in the function
vncClient: :SendUpdate. The basic procedure is like this:

336

MetaVNC Server: Current User Properties e6e
Server Hooks Display Query Administration HideWindow Managellser
Manage Users
User List
userl
S Username:
user2
Password:
o
¥ Yiew Only
Refresh List Delete User
QK LCancel Apply

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

MetaWNC Server: Current User Properties ee
Server Hooks Display Query Administration HideWindow Managelser
Hidden Window Selector
Windows Availsble User: usert hd
2-"r .
4-"4" 0
Explorer - "Program Manager”
Explorer - "userconfig”
Explorer - "BE% #E]"
Explorer - "FRERIL " v
imvrlare - " lsas (F WKIC © GTAT'S MNC: Fres Bemate Cammiker Grress - Windows
Refresh Share Shareal
Hidden Windows
1o
3o
oK Lancel Apply

Fig. 7. The snapshot of MangerUser and HideWindows Tab.

Fig. 8. The snapshot of desktop access by three clients.

first, vncClient calls SendRFBMsg, then it calls the function
SendCursorShapeUpdate to send the mouse shape update, and
calls function SendCursorPosUpdate to send the mouse posi-
tion update, and then it calls function SendTpDecRgn to reset the
region. Finally, vncClient calls SendRectangles to send the re-
lated data for updated rectangle.

The existing service threads can only request a display update
or a send display update, which cannot meet the requirements
of multiple user accesses. The tasks undertaken by CyberLiveApp
include the followings.

e First, the access control module reads some configuration
information, such as username, password, and windows list.
The information will be sent to other modules, and we define
the functions of BOOL WritePrivateProfileString and
DWORD GetPrivateProfileString to modify the policy
file.

e We can only get the window’s name from the authentication
module, but we ultimately need to get the permitted window
area. Therefore, we implement a transformation function in
SendUpdate of the vncClient object. First, we get the
application path name of the current windows on the desktop,
and further get the windows’ rectangle area based on the
application windows.

Two dialogs shown in Fig. 7 are extended on metaVNC to set
user permissions and window permissions.

(3) Windows region hide

We need to deal with layer and overlap relations of multiple
windows, so as to calculate the hidden areas. We implement this
in the function SendUpdate of the vncClient object. First, we
use GetForegroundWindow function to get the handler of the
top window, and we set a flag variable. If the top window is a hid-
den window, this will be easy. If the top window is not a hidden
window, we should get the window’s size and remove this rectan-
gle area from the hidden area with tpRegion.SubtractRect,
so that the user can view the top window which he/she is using.

There is a vncRegion object named toBeSent in the function
of SendUpdate() in vncClient.cpp. We call the addRect

function in vncRegion.cpp to add the updated area into
toBeSent. Then, we call the Rectangles () function to get the
rectList which includes the information of the rectangle area
to be sent. Finally, we call the SendRectangles(rectList)
function to send the update rectangle.

Fig. 8 shows an example in which three clients connect to the
same virtual desktop and they get different desktop views due to
various permissions.

4.1.2. Application sharing for multiple VMs

In CyberLiveApp, the Client Controller manages multiple
vncViewer processes, and the inter-process communication is
based on Windows COPYDATA messages. We have used some
Windows predefined messages such as VM_CLOSE, VM_USER,
VM_COPY-DATA, as well as messages VM_NEWCONNECTION,
VM_CON_END, VM_KILL_ALL, VM_SEND_SUBS_HWND defined
by ourselves. For instance, VM_NEWCONNECTION is a message to
create a new VNC connection, while VM_CON_END is a message to
close a VNC connection. Since the original vhcViewer project does
not provide a function for closing a specified connection, we add
a function KillConnection(TCHAR #*host, int port) in
the file VNCviewerApp32.cpp, and it calls function kil1() to
close a specified connection, while on the side of Client Controller,
we use D11Tmport (¢ ‘user32.d11’’) to send a COPYDATA
message to the vncViewer process though SendMessage (int
hWnd, int Msg,int wParam,int 1Param).

The VM Manager manages all VMs in the VM pool, and its main
functions are to create, start, or clone a specified VM with the
support of the Libvirt library. Libvirt library is a Linux API
realizing the virtualization functions of Linux; it supports a variety
of virtual machine monitors including Xen and KVM [8] (we use
KVM in CyberLiveApp). Libvirt provides a mechanism of saving
the memory mirroring of a live VM and starting a VM based on the
memory mirroring. When the VM Manager wants to clone a VM, it
will first save the memory mirroring and disk mirroring of this VM,
which is set to Suspend state during the cloning, and it will restore
it after the cloning. The procedure of VM cloning is as follows.

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

337

slels
ngin n Software List
= Name Virtual Machine IP | 0% uuip A .
Subscribe for Softwares T od PR i PR =, geaint i
—_ Vet IRIBLTEL I CoBctES 23443858
Subscription ¥ weed D110 v dcaSRToE4eBe
Vfigh IRIELNGL B0 S506- M7
VNCViewer b Aana IRIBIBA2 billeckaabba7 dbeat
V Vil Sl 1R1GB12463 windows G2MORB3aE24deed
Migration\Sharing -
1 Rubk
Auto Update i
| [er— o\
® W

(a) The menu of the Client Controller.

- 0O X
Eﬂwzwsm o Software | State P
T L Macoxsess gedt ctopped 13216811541
~ 1921681174 gpant stopped 192168117511
i wod copped 192168.1.240:1
& fefei floight stopped 13216811181
51821681171 Visual St stopped 1921681.245:3
MAC:00:FF:32]
© Shae © Migiate
<

(d) The client and terminal list connected to the
Server Controller.

(b) The software list subscription.

(c) The subscripted software
shortcut on the Start menu.

= @ =

fiay | sottware tate ®

19216811541
19216811751
192.168.1.240:1
19216811181
192.169.1.245.3

(e) The application migration request.

Fig. 9. Snapshots of a Client Controller.

e Copying the original VM disk mirroring file. The user can also
configure a copy-on-write (COW) to reduce the image copying
time.

e Saving the VM memory mirroring.

e Restarting the original VM based on the memory mirroring.

e Modifying the network configuration and the disk mirroring
path in the memory mirroring file.

e Restoring a new VM based on the modified memory mirroring
and copied disk mirroring file.

Fig. 9 shows some snapshots of CyberLiveApp for application
migration and sharing. When we start a Client Controller, it will
display an icon on the task bar, and provide an easy way to
subscribe to applications. All of these applications are maintained
in the VM pool. After subscription, the Client Controller will
automatically create shortcuts for these subscribed applications in
the Windows Start menu. When a user wants to migrate or share
a running application with another client, he/she first selects the
target client from the online client list registered on the Server
Controller. After migration, the application presentation streaming
is closed in the sponsor client and redirected to the migration
target client. However, after sharing, the presentation streaming
will not be closed in the sponsor client, and the sharing target client
will get an application streaming from the cloned VM. Therefore,
they get the same application and user data at the same time within
different clients, but then they can run independently.

4.2. Simulation results

In this section, we report on some simulations that were
conducted to evaluate the CyberLiveApp prototype. We examine
four performance aspects: (a) the overhead of multiple users’
authentication in CyberLiveApp, (b) the network traffic of multiple
users’ access for a VM, (c) the cost of live application migration, and
(d) the cost of a VM clone for application sharing. The simulation
environment is shown in Fig. 10.

Client2

S
s Userl

Fig. 10. Simulation environment.

Clientl i

Simulation environment setup: The Server Controller, Client2,
and Client3 running on machines with Intel® Core™2 Duo CPU
E6400@2.13 GHz, 4 GB RAM, Ubuntu 9.04 (Linux 2.6.28) oper-
ating system. Client1 is an IBM T61 computer with an Intel(R)
Core(TM)2Duo CPU 2.2 GHz, 4 GB RAM, Windows 7 operating sys-
tem. These machines have a 100 Mbps Internet connection. Client1
and Client2 are owned by User1. Unless specified separately, each
experiment is executed five times and the average value is chosen.

4.2.1. Desktop sharing for a VM

Simulation 1: In this experiment, we measure the total time for
the VNCServer update for multi-user access control in CyberLiveApp.
We simulate multiple clients on the three computers to connect to the
VNCServer on the side of the Server Controller. The total VNCServer
update time is recorded by increasing the number of concurrent clients
from 1 to 5.

The experimental results are shown in Fig. 11, which shows
that the overall VNCServer update time almost increases linearly
with the number of concurrent clients, and multi-user desktop

338 J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

N
wv
o

B MetaVNC

N
o
o

M CyberLiveApp

=
w
o

-
o
o

Total Time of VNCServer Update(ms)
1%
o

o

1 2 3 4 5
Number of Clients

Fig. 11. The number of clients versus the total update time of the VNCServer.

Table 5
Network traffic comparison between MetaVNC and CyberLiveApp.
System Operation
Moving windows Maximizing/minimizing
(KB) windows (KB)
MetaVNC 15781 1151
CyberLiveApp 15990 1173
18000
= MetaVNC
__ 16000
) M CYberLiveApp
X 14000 ~
£ 12000
°
= 10000 -
=
© 8000
3
@ 6000 -
2
© 4000 -
]
= 2000 -
0 4
Moving Maximize/Minimize
Windows Windows

Fig. 12. Network traffic comparison between MetaVNC and CyberLiveApp.

access for a VM in CyberLiveApp is scalable. The bar chart also
indicates that the VNCServer update time in CyberLiveApp is
higher than in MetaVNC, but the overhead incurred by the multi-
user authentication mechanism is less than 20%.

Simulation 2: In this simulation, the network traffic impact due
to Windows actions is measured. We run two types of window
operation: one is moving the windows quickly, and the other is
maximizing/minimizing the windows. We respectively record the total
traffic in a period of time on MetaVNC and CyberLiveApp, where the
total network traffic is recorded with Wireshark.

The experimental results are shown in Table 5 and Fig. 12. We
can see that these two systems have almost the same network
traffic under the two different types of operation. Moreover, the
frequent updating of a window will dramatically increase the
network traffic. In all, the traffic overhead incurred by multi-user
authentication in CyberLiveApp is small.

4.2.2. Application migration and cloning for multiple VMs

The two simulations below mainly focus on the time cost
for application migration or sharing. We analyzed and compared
the time consumed for application migration or sharing under
different configurations.

Simulation 3: In this experiment, we use two clients to simulate a
scenario of live application migration. If a client has a public IP address,

= 3000

£

o 2500 & A y_Q Py

: 2000 —&—100ms
§)Y

-

;:: 1500 —=500ms
2 1000 ms
£ 1000 —— —

f co0 N—""_ —8—1500ms
2

Q

< 0

1 2 3 4 5 6 7 8 9 10
No. of Test

Fig. 13. Application migration time for different notification interval times.

= 3500 3200.9
_E— [—
§ 3000

2

©

® 2500 + 22577

=

Q. -

& 2000 7 1665.5

S

o y

o 1500

E

@ 1000 -

[T

o |

3 S0 ‘ 1793

1000 1500 2000
Average Notification Query Interval (ms)

Fig. 14. Average application migration time for different notification interval times.

the total migration time is similar to that for Step 2 in Fig. 5. However,
in a cloud computing environment, the client generally does not have
a public IP address, so the client should use a query mechanism to get
the notification of Server Controller. We test the application migration
time for this scenario under different query intervals.

The experimental results are shown in Figs. 13 and 14. Fig. 13
shows the migration time for different notification interval times
tested 10 times: the migration time is less than 200 ms if the
query interval time is 100 ms. Fig. 14 shows the average migration
time for different query intervals tested 10 times: the application
migration time increases almost linearly with the query interval
time.

Simulation 4: In this experiment, we also use two clients to sim-
ulate a scenario of live application sharing. The environment is the
same, and the client does not have a public IP address. Based on our
designing, the sharing time will add an extra VM cloning time com-
pared with the application migration scenario. Therefore, we mainly
test the VM clone time under different sizes of VM image.

When a VM is cloned, the VM Manager needs to save the VM’s
memory mirroring, copy the disk mirroring, and restart the VM.
Therefore, the clone time consists of three parts.

e T;: Time for saving the memory mirroring file.
e T,: Time for copying VM disk COW (copy-on-write) file.
e T5: Time for restarting the VM.

The selected Windows XP VM memory is 512 M in our
experiment. After 20 repeated tests, we get the average T is 9.308 s
and T5 is 0.879 s. T, is related to the size of VM disk mirroring file.
We tested the time cost for copying COW files of size 64 M, 128 M,
256 M, 512 M, and 1024 M, respectively; the average time cost is
shown in Table 6 and Fig. 15.

As shown in Fig. 15, T, increases linearly with the increasing
size of the COW disk mirroring file. In summary, the virtualized

J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340 339

Table 6
Average time cost for copying disk mirroring files of different size.
Size 64 M 128 M 256 M 512M 1G 2G
T2b 0.122s 1.611s 3.805s 8.973s 17.391s 42713 s
45
40 '

35

30 /
25

20 /

15
" /
5

¥ T T

64M 128M 256M 512M 1G 2G

Time of File Copy (s)

VM Image COW File Size

Fig. 15. Time cost for copying disk mirroring files with different image sizes.

application’s sharing time is mainly related to the following two
factors: notification query time interval in the Client Controller and
the size of disk COW image of the VM.

5. Related work

Desktop virtualization technology provides access to cloud
computing environments from anywhere in the world, on
whatever operating systems. It has become an irresistible trend,
and is ranked second among the ten hottest technologies selected
by InfoWorld in 2010 [9].

Microsoft has launched Client-Hosted Desktop Virtualization and
the Server-Based Desktop Virtualization. The latter virtualization
technology allows the separation of software execution and
presentation by adopting some remote desktop protocols, such
as RDP. Virtual Desktop Infrastructure (VDI), a desktop delivery
model developed by Microsoft, allows users to access desktops
running in the datacenter. VMware View is developed by VMware
to achieve isolation of the operating system, applications, and
user data, which avoids problems brought by the tightly coupled
architecture. Citrix [6] also launched XenDesktop to achieve
desktop virtualization. A FlexCast technology is used to meet the
different demands of desktop environments for different users in
an enterprise. These products break the traditional tightly coupled
software execution environment, and provide flexible desktop
access approaches. However, they do not meet the demands for
live application sharing and migration or secure sharing of a virtual
desktop. Besides, these products also face a compatibility problem
under different operation systems.

The representative projects on desktop virtualization include
THINC [9,8,10], Citrix XenDesktop [6,11], Microsoft Terminal
Service [6] and some VNC systems [5,12]. THINC is a remote display
system architecture for high-performance thin-client computing
in both LAN and WAN environments. THINC enables higher-
level graphics primitives used by applications to be transparently
mapped to a few simple low-level primitives that can be
implemented easily and efficiently. Citrix provides full VDC
(Virtual Desktop Computing) using their ICA protocol in parallel
with the Ardence image and provisioning manager and desktop
server hypervisor. Recently, XenClient has extended the benefits of
desktop virtualization to mobile users, offering improved control
for IT with increased flexibility for users. RDP enhancements in
Windows Server 2008 and in recent MS client Operating Systems
will also address some of the problems identified in relation to

video and other graphics-intensive applications over RDP. VNC
[4,13-15] is based on the PRB protocol, which is a simple and
powerful remote display protocol. Unlike other remote display
protocols such as the X Window System and Citrix’s ICA, the VNC
protocol is totally independent of operating system, windowing
system, and applications. RealVNC [12] proposes different remote
display solutions for client access: the software is executed at
remote servers; the user’s client just gets the presentation desktop.
This solution only focuses on the separation of execution and
presentation, and does not involve software deployment and
execution-related fields. MetaVNC [5] pursues a remote desktop
environment on which users can control applications on different
hosts seamlessly. MetaVNC is a window-aware VNG, and it merges
windows from multiple remote desktops into a single desktop
screen.

In addition, some products and research work have emerged to
address the software service requirements for mobile equipment
in recent years. Microsoft Application Virtualization (App-V,
previously named SoftGrid) is a core component of the Microsoft
desktop optimization pack for software assurance: it transforms
applications into centrally managed virtual services that are
never installed and do not conflict with other applications. The
Progressive Deployment System (PDS) [16], Yang’s work [17], and
FVM [18] employ OS-level virtualization technology to reduce the
deploying, updating, and management labor cost of IT as well as the
execution environment isolation. All the virtual software packages
are managed at central server sites. When a user wants to use
some software, the software package will be delivered to the local
machine in a streaming way. MobiDesk [19] is a mobile virtual
desktop computing hosting infrastructure, and it transparently
virtualizes a user’s computing session by abstracting underlying
system resources in three key areas: display, operating system, and
network. It provides a thin virtualization layer that decouples a
user’s computing session from any particular end-user device, and
moves all application logic to hosting providers.

In summary, there are some desktop virtualization approaches
to providing remote access to a cloud computing environment.
However, these approaches only focus on displaying the remote
desktop, and do not consider flexible collaboration for live
application sharing and migration.

6. Conclusion

In a cloud computing environment, users can get SaaS sub-
scriptions instead of traditional perpetual-use licenses from
software vendors. We have developed a dynamic prototype system
named CyberLiveApp to support application sharing and migration
on demand among multiple clients. CyberLiveApp provides two
key services: a secure multi-user sharing service for the virtual
desktop of a VM and multi-VM application sharing and migration.
We designed a mechanism for tracking window operation events,
and the hidden window areas can be computed quickly. To
filter various windows, a proxy-based filtering mechanism is
used to deliver a desktop to different users. To achieve the
goals of live application sharing and migration between VMs, a
presentation redirection approach based on VNC protocol and
a VM cloning service based on the Libvirt interface are used.
All these methods have been implemented in the CyberLiveApp
prototype based on extended MetaVNC and the virtual machine
monitor KVM. We experimentally verified that these approaches
are effective and useful. Several extensions will be made for future
work. We are currently developing virtualization-based software
as a service platform, and we are exploring how to integrate
CyberLiveApp into some cloud-based computing environments for
flexible collaboration.

340 J. Li et al. / Future Generation Computer Systems 29 (2013) 330-340

Acknowledgments

The authors gratefully acknowledge the anonymous reviewers
for their helpful suggestions and comments, and thank Shuang
Yang, Yanmin Zhu, Liang Zhong, and Jin Li for their help with
this work. This work is partially supported by Program for New
Century Excellent Talents in University 2010 and the Fundamental
Research Funds for the Central Universities, National Nature
Science Foundation of China (No. 60903149, 91018004), and China
973 Fundamental R&D Program (No. 2011CB302602).

References

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the Clouds: A Berkeley View
of Cloud Computing, 2009.

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona

brandic: cloud computing and emerging IT platforms: vision, hype, and reality

for delivering computing as the 5th utility, Future Generation Computer

Systems 25 (6) (2009) 599-616.

M. Turner, D. Budgen, P. BreretonTristan Richardson, Quentin Stafford-

Fraser, Kenneth R. Wood, Andy Hopper, Turning software into a service,

IEEE Computer 36 (10) (2003) 38-44. http://www.cl.cam.ac.uk/Research/DTG/

attarchive/pub/docs/att/tr.98.1.pdf.

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, Andy Hopper,

Virtual network computing, IEEE Internet Computing 2 (1) (1998) 33-38.

http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/docs/att/tr.98.1.pdf.

[5] MetaVNC, a part of the Collective at Stanford University http://metavnc.
sourceforge.net/.

[6] T.W.Mathers, S.P. Genoway, Windows NT Thin Client Solutions: Implementing
Terminal Server and Citrix MetaFrame, Macmillan Technical Publishing,
Indianapolis, IN, 1998.

[7] Jianxin Li, Jinpeng Huai, Chunming Hu, Yanming Zhu, A secure collaboration
service for dynamic virtual organizations, Information Sciences 180 (17)
(2010) 3086-3107.

[8] Albert Lai, Jason Nieh, Bhagyashree Bohra, Vijayarka Nandikonda, Abhishek P.
Surana, Suchita Varshneya, Improving web browsing on wireless PDAs using
thin-client computing, in: Proceedings of the 13th International World Wide
Web Conference, WWW 2004, New York, NY, May 17-22, 2004, pp. 143-154.

[9] Info World Test Center staff. Infoworld’s 2010 Technology of the Year
Awards|Z]. Info world,2010.

[10] AlbertLai,Jason Nieh, On the performance of wide-area thin-client computing,
ACM Transactions on Computer Systems (TOCS) 24 (2) (2006) 175-209.

[11] Citrix Systems—Virtualization, Networking and Cloud. http://www.citrix.
com/.

[12] RealVNC - VNC® remote control software, http://www.realvnc.com/.

[13] Tom Wall, Virtualisation and thin client: a survey of virtual desktop
environments, Technical Report, Dublin Institute of Technology, 2009, http://
arrow.dit.ie/ahfrcart/5/.

[14] C.Taylor, . Pasquale, Improving video performance in VNC under high latency
conditions, 2010, in: International Symposium on Collaborative Technologies
and Systems, CTS, 17-21 May, 2010, pp. 26-35.

[15] Oren Laadan, Ricardo Baratto, Dan Phung, Shaya Potter, Jason Nieh, DejaView:
a personal virtual computer recorder, in: Proceedings of the 21st ACM
Symposium on Operating Systems Principles, SOSP 2007, Stevenson, WA,
October 14-17, 2007, pp. 279-292.

[16] Alpern, Bowen, Joshua Auerbach, et al. PDS: a virtual execution environment
for software deployment, in: Proceedings of the First ACM/USENIX Interna-
tional Conference on Virtual Execution Environment, March, 2005.

[17] Yu, Yang, Fanglu Guo, Susanta Nanda, Lapchung Lam, Tzi-cker Chiueh, A
Feather-weight virtual machine for windows applications, in: Proceedings
of the Second ACM/USENIX Conference on Virtual Execution Environments,
VEE'06, June, 2006.

2

[3

[4

[18] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,]J. Chow,]. Norris,
M.S. Lam, M. Rosenblum, Virtual appliances for deploying and maintaining
software, in: Proceedings of Seventeenth USENIX Large Installation System
Administration Conference, October, 2003.

[19] Ricardo A. Baratto, Shaya Potter, Gong Su, Jason Nieh, MobiDesk: mobile
virtual desktop computing, in: Proceedings of the 10th annual international
conference on Mobile computing and networking, MobiCom '04, ACM, New
York, NY, USA, 2004, pp. 1-15.

- | Jianxin Li is an associate professor of Beihang University.

~ He received his Doctor’s degree in Computer Software
| | and Theory from Beihang University in 2008. His research
interests include information security, virtualization, and
. Web Service. He is an editorial board member of the
' Journal of Cloud Computing. He has published over 30
papers in journals including Elsevier Information Sciences,
Journal of Peer-to-Peer Networking and Applications,
HASE 2008, SRDS 2007, and eScience 2006. He also is a
program committee member of international conference
IEEE Cloud 2009-2011, IEEE SCC 2008/2010, SNPD 2010,
and others. He is member of [EEE.

Yu Jia received his Bachelor’s degree in computer science
from Beihang University, China, in 2010. She is currently
an M.S. student in the Department of Computer Science,
Beihang University, China. Her research interests include
a broad range of topics related to cloud computing,
including virtualization, Saa$, and virtual desktops.

Lu Liu is a Senior Lecturer in the School of Computing
and Mathematics, University of Derby (UK). Before joining
the University of Derby, he was Lecturer in the School
of Engineering and Information Sciences at Middlesex
University (UK). Previously, he was a Research Fellow
in the School of Computing at the University of Leeds
(UK), working on the NECTISE Project, which was a UK
EPSRC/BAE Systems funded research project involving
ten UK Universities, and on the ColaB Project, which
was funded by UK EPSRC and China 863 Program. He
received his Ph.D. degree (funded by UK DIF DTC) from
the University of Surrey (UK) and his M.Sc. degree from Brunel University
(UK). His research interests are in areas of service-oriented computing, software
engineering, Grid computing and peer-to-peer computing. Dr Liu has over 50
scientific publications in reputable journals, academic books, and international
conference proceedings. He won the Best Paper Award at the Realising Network
Enabled Capability Conference in 2008. He is member of IEEE.

Tianyu Wo received his B.Eng. and Ph.D. degrees, both
in Computer Science, from Beihang University, China, in
2001 and 2008, respectively. Heis currently an Assistant
Professor in the School of Computer Science and Engi-
neering, Beihang University. His current research interests
include large-scale distributed systems, virtual computing
environments, network operation systems, and network-
enabling applications. He is a member of IEEE.

