
CROWN-C: a High-Assurance Service-Oriented
Grid Middleware System

Paul Townend1, Nik Looker1, Dacheng Zhang1, Jie Xu1,

Jianxin Li2, Liang Zhong2, Jinpeng Huai2

1School of Computing 2Dept. Computer Science
University of Leeds Beihang University
Leeds, LS2 9JT, UK Beijing, 100083, P.R. China

{pt, nlooker, dcz, jxu} @ comp.leeds.ac.uk {lijx, zhongl, huaijp} @ act.buaa.edu.cn

Abstract
Service-orientation is a highly useful means of
developing flexible, agile, and dependable software
systems, and is a paradigm that has been increasingly
adopted into Grid Computing middleware. However,
service-orientation brings with it new challenges in the
fields of dependability and security that need to be
addressed by the High Assurance Systems community
in order to provide sufficient support to enable service-
based Grid applications to offer non-trivial Quality of
Service guarantees. This paper discusses some of the
new dependability and security challenges introduced
by service-orientation, and for the first time introduces
CROWN-C – a Grid middleware system that features
specific enhancements designed to support the
development and assessment of highly secure,
dependable, service-oriented Grid systems and
applications. The architecture of the new middleware
is discussed, and the architecture and functionality of
each dependability and security enhancement is
described, alongside the results of experimental
evaluations of each enhancement. Future work is then
discussed.

1. Introduction

Service-orientation is emerging as a highly useful
means of developing flexible, agile, and dependable
software systems. A service can be defined as “a
mechanism to enable access to a set of one or more
capabilities, where the access is provided using a
prescribed interface and is exercised consistent with
constraints and policies as specified by the service
description.” [1], whilst [2] defines a service-oriented
architecture as:

 “an application architecture within which all functions
are defined as independent services with well-defined

invokable interfaces, which can be called in defined
sequences to form business processes.”

Service-orientation aims to facilitate the development
of complex, dynamic, inter-organisational systems as
well as to greatly simplify the process of integrating
existing legacy systems, and has a profound impact on
the software development process. As services are
loosely-coupled and can be invoked through well-
supported standards, it becomes possible to construct
demand-centric [3] applications by dynamically
discovering and binding to autonomous system
components at run-time. This process has been
described as ultra-late binding, and can be used to
create so-called agile computing systems with dynamic
execution conditions and resource demands [4];
specific functionalities of applications can be altered in
part simply through modifications to the composition
of services that they use. Service-orientation can also
drive down the costs of developing applications, as the
loosely-coupled nature of services often means that
services can be reused in different applications or
easily replicated for gains in dependability, and it is
speculated that the availability of multiple functional-
equivalent services may reduce the expense (in terms
of both development time and cost) and improve the
feasibility of developing fault-tolerant systems [5].

The Grid Computing community is reorienting itself
toward the service-oriented paradigm (and thus
creating so-called service-oriented Grids) in order to
help solve the fundamental problem of coordinated
resource sharing and problem solving in dynamic,
multi-organisational virtual organizations (VOs). A
VO is formed by whenever an application or workflow
is created that features autonomous services owned by
multiple organizations, every participating organisation
makes available (i.e. shares) some proprietary services
and part of its own knowledge.

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.56

35

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

However, service-oriented Grids bring about many
new challenges not faced by traditional distributed
systems research, in areas such as security,
dependability and dependability assessment; these are
of especial interest when developing high-assurance
systems (systems that require levels of safety and
dependability that far exceed normal enterprise needs,
and invariably experience high consequences in the
event of a system failure). The new challenges concern
not only the composition of service workflows, but
also the network environments that the services are
deployed upon, which are ever more spatially
disparate, heterogeneous, and spread across many
administrative domains.

This remainder of this paper introduces some of the
new challenges discussed above, before introducing
CROWN-C, a new Grid middleware system with
specific functionality enhancements to support the
development and assessment of highly secure and
dependable service-oriented Grids. Each of these
enhancements is discussed in detail, and the empirical
results of evaluations of each enhancement are
presented, before the paper concludes with a look at
future work on CROWN-C.

2. New issues due to service-orientation

Many of the new challenges faced by the High
Assurance Systems community due to the advent of
service-orientation and Grids can be related to the
concepts of dependability and security. Dependability
is defined in [6] as “that property of a computer system
such that reliance can justifiably be placed on the
service it delivers. The service delivered by a system is
its behaviour as it is perceived by its users.” It is
important to state that this definition of dependability
is not simply a synonym for reliability; rather,
reliability is just one attribute of the overall concept.

Traditionally, dependability is a global concept, and
subsumes the attributes of reliability, availability,
safety, integrity, maintainability, and confidentiality.
However, these attributes are becoming increasingly
differentiated; for example, [7] distinguishes between
dependability and security attributes - as shown in
Figure 1 - in order to highlight the main balance of
interest given to these attributes by their respective
communities. Nonetheless, even if such a
differentiation is made, it does not follow that the
dependability or security communities have no interest
or activity in the other listed attributes, and our
research takes into consideration both of these
concepts.

Many of the major challenges to the provision of high-
assurance service-oriented Grids are due to issues
arising from the autonomicity of individual services
within virtual organisation workflows. Table 1 relates
the problems posed by this autonomicity to the
attributes of dependability and security.

New challenges emerge in the area of testing too; when
viewed from the point of view of dependability, there
is an implicit trust of middleware. Service-oriented
middleware products are used as a basis for large
undertakings, but there is little or no information on
dependability assessment of the middleware itself,
even though it greatly impact the security and
dependability of a system constructed upon it.
Furthermore, there is an implicit distrust of third party
services when constructing service-oriented systems;
organisations much prefer to create their own services,
for which they have QoS statistics. Dependability
assessment techniques must be performed to both
ensure that robust middleware is developed, and also
that trust issues with third party services are overcome.

In the area of security, the demand-centric nature of
applications executing on service-oriented Grids leads
to often unpredictable workflows and business
processes, and on some occasions, the actual execution
of a business process can be “one-of-a-kind”. As each
organisation within a VO has its own security
mechanisms and policies to protect its local resources,
a composite application has to operate amongst
multiple heterogeneous security realms. A security
realm is a group of principals (people, computers,
services etc.) that are registered with a specified
authentication authority and managed through a
consistent set of security processes and policies.

Dependability

Maintainability

Integrity

Confidentiality

Safety

Reliability

Availability

Security

Figure 1. Dependability and Security

attributes in [7].
Because organisations and services can join a
collaborative process in a highly dynamic and flexible
way, it cannot be expected that every pair of
collaborating security realms always have a direct
cross-realm authentication relationship. A possible
solution to this problem is to locate some intermediate
realms that serve as an authentication-path between the
two separate realms that are to collaborate. However,

363636363636

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

Table 1. Some dependability attributes and
their link with autonomous services

Dependability

Attribute Autonomicity issue

Availability

A participant within a VO may have
no control over the availability of
services provided by other
participants; service availability may
be dynamic and unpredictable [8].

Reliability

A participant within a VO may have
little or no knowledge of the
reliability (including the
performance) of services provided
by other participants; this is
especially a problem in long running
interactions [5].

Confidentiality

A participant within a VO may have
little or no knowledge of the access
procedures in place to protect the
confidentiality of data shared with
services provided by another
participant. [9].

Integrity

A participant within a VO may have
little or no knowledge of the security
procedures in place to protect the
integrity of services provided by
another participant. [10].

the overhead of generating an authentication-path for
two distributed realms is non-trivial. The process can
involve a large number of extra operations for
credential conversion, and require a long chain of
invocations to intermediate services. Moreover, such
authentication paths may not exist between security
realms in many cases.

In addition to this, traditional access control methods
based on the identity of each user in a VO do not scale
as the number of users and services increase, especially
when the population of users and services is highly
dynamic. It is a fundamental but challenging problem
to dynamically build mutual trust between service
requesters and providers coming from different
security domains, whilst preserving their privacy in
open Grid environments.

Although much work has been performed in both the
Web Services and Grid Computing communities to
address some of these issues on an individual level, no
major service-oriented Grid middleware system has
focused on integrating specific dependability and
security technologies in order to provide a fully-
integrated environment for the assessment and
deployment of secure and dependable high-assurance
applications and systems.

In light of this, the University of Leeds (UK) and
Beihang University (China) are collaborating to
develop a Grid middleware system that features
integrated tools for the assessment and deployment of
high-assurance systems. The collaborative project is
known as COLAB (COllaboration between Leeds And
Beihang) and involves extending the CROWN (China
Research and development environment Over Wide-
area Network) Grid middleware developed at Beihang
University with service-oriented security and
dependability technologies developed at the University
of Leeds. The result of this collaboration is a high-
assurance service-oriented Grid middleware system
known as CROWN-C (CROWN-COLAB).

The remainder of this paper presents the architecture of
CROWN-C, and discusses each integrated
dependability and security enhancement. Empirical
results of the assessments of each enhancement are
presented, and future work is discussed.

3. CROWN-C

According to [11], the three major issues addressed by
Grid computing are:

• Co-ordination of resources that are not subject
to central control

• Standard, open, general-purpose protocols and
interfaces

• Delivery of non-trivial Quality of Service
(QoS)

In order to effectively utilize and deliver these features,
some form of middleware is required. One of the most
popular middlewares to attempt this is the Globus
Toolkit (http://www.globus.org/toolkit), a reference
implementation developed by the Globus Alliance
(http://www.globus.org) - a “community of
organizations and individuals developing fundamental
technologies behind the Grid". Although originally
oriented towards High Performance Computing
clusters, the Globus Toolkit has now evolved to offer a
service-oriented approach, based on the Open Grid
Services Architecture (OGSA) and the Web Services
Resource Framework (WSRF) standards, developed by
the Open Grid Forum (http://www.ogf.org).

OGSA is a service-oriented architecture, which adopts
the notion of a service as a unified resource
encapsulation format to provide better extensibility and
interoperability between Grid resources, whilst WSRF
refines the service interface and interoperating
protocols of OGSA; this makes OGSA a Web Service
compatible implementation framework, which

373737373737

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

App App App App

Scheduler

Rich Client Framework Portals

RLDS

RLDS RLDS

RLDS RLDS

RLDS

Resource

Query

info

JDT
CROWN

Designer

Eclipse

Generate

register to ...

Workflow Engine

WfS
register

to...

M
o

n
ito

r

Set Event

PC

Resources

Cluster front end

Cluster nodes

Device Host

Devices

PDE
CROWN-

FIT

P
re

S
e

rv P
ro

v
e

n
a

n
ce

Application layer

Middleware layer

Resource layer

Install / Config Install / Config Install / Config

Node

Server
Sec

S S

Grid -

M PA

S S

App App App App App App

FT-Grid FT -Grid

FT - Grid

ATN

Service

Grid -

M PA

Node

Server
Sec

ATN

Service

Node

Server

Grid -

M PA
Sec

ATN

Service

Figure 2. CROWN-C Architecture

facilitates the merging of Grid and Web service
technology. However, as the new challenges discussed
in Section 2 show, there is still a great deal of work
that needs to be done in order to support the very
demanding levels of Quality of Service required by
high-assurance systems. CROWN-C is a Grid
middleware system that attempts to provide a
middleware to enable such systems.

The CROWN-C Grid middleware is an extension of
the CROWN (China Research environment Over
Wide-area Network) Grid middleware, which itself is
based upon the Globus Toolkit. The major
differentiators between the Globus Toolkit and
CROWN are that CROWN places more emphasis on
Grid resource management and dynamic management
mechanisms at the design stage, and provides a new
security architecture with distributed access control
mechanisms and trust management mechanisms.

Furthermore, CROWN features integrated provenance
recording capabilities; the provenance of a piece of
data is the documentation of the process that led to a
given data element’s creation. This concept is well
established, although past research has referred to the
same concept with a variety of different names (such as
lineage and dataset dependence). Provenance in
relationship to workflow enactment and service-
oriented architectures (SOAs) is discussed in [12]; in a
workflow-based SOA interaction, provenance provides
a record of the invocations of all the services that are
used in a given workflow, including the input and

output data of the various invoked services, and their
location. The recording of provenance is essential in
many areas; for example, in the pharmaceutical
industry, there is a legal requirement in many countries
to record the provenance of in-silico experimentation.
The particular provenance recording and querying
technology integrated into CROWN is the PreServ
service-oriented provenance scheme, developed at the
PASOA project at the University of Southampton, UK
(http://www.pasoa.org).

The features of CROWN are discussed in more detail
in [13]. For CROWN-C, the following areas were
targeted for improvement:

• Fault-tolerance support tools

• Fault-injection based assessment facilities

• Advanced multi-party authentication tools

• Automated trust negotiation tools

The specific technologies integrated into CROWN to
address such issues are FT-Grid to support fault-
tolerance, CROWN-FIT to support fault-injection based
assessment, Grid-MPA to address multi-party
authentication issues, and ATNService to provide
automated trust negotiation. An overall architecture of
CROWN-C is shown in Figure 2, with the
enhancements on top of the CROWN Grid middleware
shaded. Each of these tools are discussed in the
following Sections.

383838383838

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

4. FT-Grid

Given the issues raised in Section 2 (and specifically
Table 1), it is important to investigate methods for
overcoming the dependability challenges caused by
service autonomicity, especially given the importance
of guaranteeing Quality of Service levels in a demand-
centric world. A traditional way to increase the
dependability of distributed systems (both software and
hardware) is through the use of fault-tolerant
techniques. [14] describes the function of fault-
tolerance as

“…to preserve the delivery of expected services despite
the presence of fault-caused errors within the system
itself. Errors are detected and corrected, and
permanent faults are located and removed while the
system continues to deliver acceptable service.”

Many fault-tolerant techniques use some form of
diversity to achieve their aim; of particular interest in a
service-oriented context is design-diversity fault-
tolerance. Design-diversity is a general way of
allowing a system to operate successfully in the
presence of a design fault by constructing the entire
system from a number of diverse designs (i.e. software
redundancy) derived from a common specification. An
example of such a system is shown in Figure 3. This
particular system uses a so-called n-version design
approach, whereby multiple (in this case n=3)
functionally-equivalent channels are invoked in
parallel (although sequential invocation is conceptually
possible). An adjudication mechanism compares their
outputs and can either forward a consensus result or
else fails with no agreement. In addition to consensus
voting, a variety of other adjudication techniques may
be applicable (a survey of various voters for diverse
redundant components is given in [15]).

In the context of demand-centric, service-oriented Grid
applications, the technique of design-diversity shows
much promise as it may be possible to create such
systems at much lower cost than would traditionally be
the case. This can be achieved by dynamically binding
to pre-existing, functionally-equivalent services at run-
time. However, in this context, a new problem that is
not encountered in traditional distributed systems
occurs. This is due to the possibility that multiple
demand-centric services may, during the execution of
their dynamic workflows, invoke identical (and
potentially faulty) ‘common’ services and hardware.
This has the effect of reducing channel diversity, and
increasing the likelihood of common-mode failure
occurring (whereby multiple channels give similar
incorrect outputs), thus potentially causing the
adjudication mechanism to forward an incorrect result.

Channel 3

Channel 2

Channel 1

I

N

P

U

T

State-connection information

Consensus

result

Fail

A
d
ju

d
ic

a
tio

n
 m

e
c
h

a
n
is

m

c-vector

c-v
ector

c-vector

N-version Executive (NVX)
Figure 3. N-Version Design system.

This is problematic, as in many high-assurance and
safety-critical systems, forwarding on an incorrect
result is often far more dangerous than announcing a
failure (and possibly moving the system into a safe
state). The common service problem is shown in Figure
4. The FT-Grid tool [5], developed at the University of
Leeds and integrated into CROWN-C, attempts to
reduce the impact of this problem, through the use of
the PreServ tool (already integrated into COLAB-C, as
discussed in Section 3) to assist in the derivation of
topological information about system workflows.

Sa

Node X

Sd Se

Sb

Node Y

Sf

Sc

Node Z

Sg Sh

N

|
C

O

P

Y

S

E

R

V

I
C

E

Figure 4. The common service problem

FT-Grid allows a user to manually search through any
number of public or private UDDI repositories (should
more than one UDDI server be specified, then FT-Grid
will collate and return matching services from all
UDDI servers specified), select a number of
functionally-equivalent services, choose the parameters
to supply to each service, and invoke those services in
parallel. FT-Grid can then perform voting on the
results returned by the services, with the aim of
filtering out any anomalous results. Topological data is
derived from analysis of the provenance records of
service workflows generated by PreServ; by achieving
topological awareness, FT-Grid may adapt to dynamic,
demand-centric services in order to limit the common
service problem, through techniques such as weighted
voting [15].

393939393939

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

Table 2. Summary of FT-Grid results

 Correct
result No result CMF

Simplex Run 1 828 172 -
Simplex Run 2 858 142 -
Simplex Run 3 822 178 -

Simplex average 836 164 -
Traditional NVD Run 1 928 9 63
Traditional NVD Run 2 921 14 65
Traditional NVD Run 3 921 7 72

Traditional NVD Average 923.33 10 66.66
FT-Grid Run 1 996 4 0
FT-Grid Run 2 990 10 0
FT-Grid Run 3 996 4 0

FT-Grid Average 994 6 0

Multiple runs of experiments performed through the
use of FT-Grid running an n-version design fault-
tolerance configuration on Grid services perturbed
using CROWN-FIT (discussed in Section 5) have
shown it to obtain a greater percentage of correct
results than either a single (simplex) service, or a
traditional n-version design fault-tolerance scheme.
These results are shown in Table 2.

5. CROWN-FIT

Fault Injection Technology (FIT) is the University of
Leeds network level fault injector framework designed
to work with middleware systems in order to address
the dependability assessment issues discussed in
Section 2. FIT contains a Fault Injection Engine (FIE)
that is implemented in such a way that different
middleware message formats can be handled, including
both text and binary. CROWN-FIT is a specific
tailoring of the FIT framework to work with the
CROWN-C and Globus Toolkit middlewares.
CROWN-FIT is implemented as a plug-in for Eclipse,
which is a platform independent framework for
developing applications (see Figure 5), and works
alongside a Grid service development plug-in known
as CROWN Designer.

Figure 5. The Eclipse-based CROWN-FIT tool.

The major innovation of CROWN-FIT is a novel fault
injection mechanism that allows network-level fault
injection to be used to simulate Code Insertion fault
injection, whilst circumventing the need for
modifications to service source code [16]. This is
accomplished by intercepting middleware messages
within the protocol stack, decoding the middleware
message in real-time, and injecting appropriate faults.
This is shown in Figure 6.

Figure 6. CROWN-FIT injection points

Since middleware messages (Grid middlewares
typically use the SOAP [17] message protocol) are
intercepted as complete entities, it is possible to
corrupt, reorder and drop complete messages, rather
than just part of a network packet that may be
discarded before it reaches the middleware layer.
Messages can thus be modified and then passed on to
the rest of the protocol stack; in this way, faults can be
injected but not filtered out by the protocol stack. By
decoding the middleware message and allowing this
level of targeted fault injection, it is possible to
perform parameter perturbation similar to that achieved
by Code Insertion at the API level. This can also be
used to perturb SOAP element attributes in order to
assess middleware protocols.

As an example of the effectiveness of CROWN-FIT
within the CROWN-C Grid middleware, we present a
case study that expands upon the results obtained in
[18], which uses FIT to demonstrate potential flaws in
an underlying Grid Middleware. This case study
develops one aspect of that work; namely the lack of
validation of SOAP messages within Globus-based
Grid middlewares. This has potentially serious
implications in terms of the integrity of a system,
especially in terms of malicious attacks, since SOAP
messages can be constructed and sent to a service
which have the potential to cause attacks such as
Denial of Service (DoS) and buffer overflow.

Figure 7 shows a typical SOAP message; each element
is composed of a tag and attributes containing schema
information. This case study uses CROWN-FIT to
invalidate the schema information contained within a
SOAP message whilst keeping its XML syntactically
correct.

404040404040

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

<?xml version="1.0" encoding="utf-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:fooResponse
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="http://www.nik.looker.name/TestService/">
 <fooResponse xsi:type="xsd:unsignedInt">0</fooResponse>
 </ns1:fooResponse>
 </soapenv:Body>
</soapenv:Envelope>

Figure 7. Example SOAP message.

Table 3. Results of the CROWN-FIT case study.

SOAP element Element attribute Original Value Injected Value Exception
Thrown

soapenv:Envelope xmlns:soapenv http://schemas.xmlsoap.org/soap/envelope/ "invalid schema" no
 xmlns:xsd http://www.w3.org/2001/XMLSchema "invalid schema" no
 xmlns:xsi http://www.w3.org/2001/XMLSchema-instance "invalid schema" no
 extra attribute soapenv:Envelope no

soapenv:Body extra attribute soapenv:Body no
ns1:fooResponse soapenv:encodingStyle http://schemas.xmlsoap.org/soap/encoding/ "invalid schema" no

 xmlns:ns1 http://www.nik.looker.name/TestService/ "invalid schema" no
 extra attribute ns1:fooResponse no

fooResponse extra attribute fooResponse no

CROWN-FIT fault models are written which
substitutes new text for a specific schema address.
These fault models are then applied to various SOAP
messages in sequence, in order to see if any adverse
affects can be observed. A further fault model is
constructed that adds an extra attribute to an element;
this is in violation of the SOAP schemas. Table 3 gives
the results obtained from the fault injection campaign.
From this we can see that no exceptions are thrown for
any of the schema invalidations, thus demonstrating
that no XML validation is preformed on SOAP
messages by the Axis 1.3 java package used in this
case study.

Since XML parsing and validation are relatively time
costly activities, we can postulate that a decision was
made during development to minimise some of this
overhead by turning XML validation off. In order for
the approach to work, the assumption must be made
that a valid, non-malicious middleware is being used to
communicate with Axis 1.3; for this to be a valid
assumption, there must be an implicit trust of all the
components within a system. Whilst this assumption
may hold for well known and trusted Grid
environments, it is more of a risk when composing
systems from third party services which may have been
located by service discovery, since there may be no
trust guarantee. Whilst some of the risk may be

mitigated via the use of a broker, a middleware that
doesn’t have the potential vulnerabilities as those
described above is desirable.

6. Grid-MPA

As mentioned in section 2, dynamic authentication
between organisations can be highly complex and
time-consuming if some intermediate authentication
paths have to be created and credentials have to be
converted. Therefore, when there is no existing direct
authentication relationship in place between two
security realms, it is practically difficult for a system to
enable any secure collaboration between services from
the two security realms in a just-in-time fashion. In
order to address heterogeneous cross-realm
authentication (HCRA) issues in service-based
business sessions, we have developed a new
authentication system entitled Grid-MPA. Our Grid-
MPA method refers to a business process execution as
a business session, and the principals working within
the business session as session partners. In a Grid
context, session partners are Grid service instances.

In Grid-MPA, every session partner is associated with
a distinct identifier, and a secret key is generated and
distributed for every pair of collaborating session
partners. Session authorities (SAs) are employed to
manage the membership of session partners in business
sessions and provide reliable real-time information for
authentication between session partners.

Before a principal (i.e. service instance) joins a
business session, it must attempt to register with the
associated SA. The SA will decide whether to accept it
based on certain policies; for example, the SA may
require that the applicant must be recommended by a
member (or multiple members) of the corresponding
business session. In this way, Grid-MPA generates a
security boundary for business sessions that allows
only trusted principals to join a business session; it also

414141414141

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

allows the identity of session partners to be verified
through cryptographic methods. Therefore,
collaborating instances within a business session can
authenticate with each other by simply using their
session memberships, as illustrated in Figure 8; thus, a
reasonable level of trust relationships between
members of a business session can be generated.

Because in Grid-MPA authentication of a Grid service
instance within a business session is much simpler than
in conventional HCRA, we refer to this as simplified
cross realm authentication (SCRA). In a multi-party
session with n security realms, up to (n – 1) × (n – 2)/2
authentication processes can be simplified as SCRA,
based on session memberships. Therefore, Grid-MPA
largely avoids the establishment of authentication paths
between collaborative session partners and credential
conversion.

Figure 8. HCRA and SCRA

Grid-MPA has been tested with two Grid middleware
systems - CROWN-C and Globus Toolkit 4 - and an
experimental system has been created to evaluate the
performance of Grid-MPA in a realistic environment.
Empirical evaluation results show that Grid-MPA (ES1
in Figure 9) has very promising scalability trends. In
the experiment illustrated in Figure 9, the time
consumption of Grid-MPA when introducing new
session partners is proportional to the number of
session partners introduced, and Grid-MPA can
execute in a stable state until more than 260,000
session partners are generated and introduced into a
business session (after this amount, all available
memory had been consumed in the test system).
Additionally, these results indicate that the overhead
imposed by Grid-MPA is comparable with the
overheads introduced by the standard security
mechanisms (ES2 in Figure 9) used in both the
standard CROWN and GT4 middleware systems.

CROWN-C Distributed-Secure message (signature) and no additional security

protocols

0

10000000

20000000

30000000

40000000

50000000

60000000

3.
00
E
+0
2

3.
33
E
+0
4

6.
63
E
+0
4

9.
93
E
+0
4

1.
32
E
+0
5

1.
65
E
+0
5

1.
98
E
+0
5

2.
31
E
+0
5

2.
64
E
+0
5

2.
97
E
+0
5

3.
30
E
+0
5

3.
63
E
+0
5

3.
96
E
+0
5

4.
29
E
+0
5

4.
62
E
+0
5

4.
95
E
+0
5

Instances

M
il
li
s
e
c
o
n
d
s ES2-Sig

ES2-NoSec

ES1-Nosec

ES1-Sig

Figure 9. Empirical evaluation

Besides empirical evaluation, the correctness of the
Grid-MPA protocols has been formally analysed with
BAN logic; the details of this analysis are presented in
[19].

7. ATNService

As discussed in Section 2, dynamically building
mutual trust relationships between service requesters
and service providers from different security realms is
a fundamental problem, especially when considering
the need to preserve their privacy.
To address these issues, we have developed an
ATNService [20] that supports the automated trust
negotiation [21] approach to enhance the Grid security
infrastructure, thereby allowing flexible negotiation
between strangers from different security realms. This
service has been successfully implemented into
CROWN-C, and complements existing Grid security
infrastructures when trust is needed between unknown
parties. During the process of trust negotiation, the
ATNService invokes an ATN Engine; this is an
independent library that parses credentials and policies,
and manages the states of different trust negotiation
sessions. It features three key components:

 Negotiation Strategy: This component decides
whether the negotiation process should continue
or not. If it continues, it determines whether
credentials can satisfy the specified access control
policy, then discloses the corresponding satisfied
credentials, or new access control policies.

 Trust Chain Construction: This component is
used to collect necessary credentials and construct
a trust chain (also known as a credential chain)
from trusted issuers to the requester, based on
delegation credentials, role mapping policies, etc.

 Trust Ticket Manager: This component can
issue or verify short-term tickets to avoid re-
negotiation when multiple service access requests
occur in a short time interval.

424242424242

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

The relationship between the ATN Engine and
ATNService is illustrated in Figure 10. When a client
wishes to access a target service protected by
ATNService, a series of procedures are invoked,
including building a secure tunnel based on the Secure
Conversation specification, trust negotiation, and target
service authorization. When the client sends a service
request message to a target service located in another
domain, the requesting SOAP message processing
chain contains a local RedirectHandler that will
initialize an ATN Engine. This ATN Engine will then
invoke the ATNSevice for the target service.

RediretHandler

ATN Engine

Grid User Service Provider

… … AuzhzHandler… …

config config

Target
Service

ATN
Service ATN Engine

Domain Boundary

ATN
Context

Creds Policy
TrustTicket
Manager

Negotiation
Strategy

Trust Chain
Construction

Figure 10. CROWN-C ATNService and ATN

Engine

Upon receiving negotiation requests from the client’s
ATN Engine, the ATNService of the service provider
will also initialize an ATN Engine, and store the state
of negotiation into its ATNContext. The two
participants may disclose their credentials and access
control policies for sensitive information for several
rounds, until a final decision (‘success’ or ‘failure’) is
reached. If the negotiation succeeds, the ATNService
will return a success message, and the context stored in
ATNContext will be updated accordingly.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

O
v
e
r
a
l
l

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Policy Caching

TrustTicket+PolicyCaching

No PolicyCaching

Number of Concurrent Requests

6s

16s

50s

9s

50s

117s

Figure 11. Number of concurrent requests

vs. execution time

Finally, the client can insert the session id into a SOAP
message header and sign it before sending the message

to the target service; the target service can verify the
authenticity of the session id through its AuthzHandler,
and authorize service access if verification succeeds.
Additionally, in a service container, a special target
service may be accessed frequently by many
requesters; therefore, the caching of credentials and
access control policies, with a dedicated queue for such
services, is supported. This mechanism is intended to
avoid frequent initialization of the negotiation engine.

In CROWN-C, we have evaluated ATNService
through comprehensive experimentation, with
encouraging results. Figure 11 plots overall execution
time against the number of concurrent requests. As can
be seen, the overall negotiation execution time of
ATNService increases linearly, and the effectiveness of
trust ticket and policy caching is obvious. For instance,
when 25 concurrent requests are received, service
execution time is 6s, 16s and 50s respectively. When
50 concurrent requests are received, service execution
time is 9s, 50s and 117s respectively. These results
highlight the strong reduction in overall execution time
when using trust ticket and with-caching methods. In
CROWN-C, we believe that most service invocations
benefit from the trust ticket and policy caching
mechanisms.

8. Conclusions and future work

CROWN-C is a Grid middleware system developed by
the Universities of Leeds, UK, and Beihang, China, as
part of the EPSRC-funded COLAB project. It extends
the CROWN Grid middleware to feature specific
enhancements designed to support the development
and assessment of high-assurance service-oriented Grid
systems and applications.

This paper highlights some of the new dependability
and security challenges introduced by the service-
oriented paradigm, and relates these challenges to the
dependability and security enhancements featured in
the CROWN-C Grid middleware.

These enhancements are: 1) The FT-Grid fault-
tolerance tool, designed to facilitate the development
of topology-aware, dynamic fault-tolerant service-
based systems; 2) The CROWN-FIT fault-injection tool
to perform middleware-level dependability assessment;
3) the Grid-MPA tool, which seeks to enable instance-
level multi-party authentication between interacting
services; and 4) the ATNService tool, which seeks to
establish a capability for automated trust negotiation
between virtual organisation participants from different
security realms. For each enhancement, the latest
experimental results and evaluations are presented.

434343434343

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

Figure 12. Screenshots of CROWN-C running

the g-Viz and AREM services

Work on the CROWN-C system is ongoing as part of
the COLAB project; future work includes more
rigorous testing of the CROWN-C system, using a
wide variety of Grid applications, such as the g-Viz
visualization service [22] and the Advanced Regional
Eta-coordinate Model (AREM) weather prediction tool
[23]. Screenshots of both of these applications running
on CROWN-C are shown in Figure 12.

Acknowledgements

CROWN-C is developed in part through the COLAB
project (EPSRC Grant EP/D077249/1). PreServ was
developed at the University of Southampton.

References

[1] OASIS Reference Model for Service Oriented

Architectures, Working Draft 11, http://www.oasis-
open.org/committees/download.php/15966/wd-soa-rm-
11.pdf, 15th Dec 2005.

[2] K. Channabasavaiah, K. Holley, E. Tuggle, “Migrating
to a Service-Oriented Architecture”, IBM White Paper,
http://www-128.ibm.com/developerworks/webservices
/library/ws-migratesoa/, 2004.

[3] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L.
Macaulay, M. Munro, "Service-based software: the
future for flexible software," in Proc of the 7th APSEC,
pp. 214, 2000.

[4] P. Townend, J. Xu, “Dependability in Grids”, in IEEE
Distributed Systems Online, Vol. 6, No. 12, Dec 2005.

[5] P. Townend, P. Groth, J. Xu, "A Provenance-Aware
Weighted Fault Tolerance Scheme for Service-Based
Applications", in Proc of the 8th IEEE ISORC, Seattle,
2005.

[6] B. Randell et al., “Dependability – Its Attributes –
Impairments and Means”, in Predictably Dependable
Computing Systems, Springer-Verlag, 1995.

[7] A. Avizienis, J-C. Laprie, B. Randell, C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and
Secure Computing,” in IEEE Transactions on
Dependable and Secure Computing, Vol. 1, No. 1,
January-March 2004.

[8] I. Jang-uk, P. Avery, R. Cavanaugh, L. Chitnis, M.
Kulkarni, S. Ranka, “SPHINX: A Fault-Tolerant System
for Scheduling in Dynamic Grid Environments”, in Proc
of the 19th IEEE IPDPS, 2005.

[9] M. Elliot, S. Pickles, K. Purdam, D. Smith, “Disclosure
Risk and Grid Computing”, in Proceedings of 4th U.K.
e-Science All-Hands Meeting, 2005.

[10] S. Naqvi, M. Riguidel, “A Threat Model for Grid
Security Services”, in Proc of the EGC 2005,
Amsterdam, The Netherlands, Lecture Notes in
Computer Science 3470, 2005.

[11] Foster I, “What is the Grid? A three point checklist,”
http://www-
fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

[12] M. Szomszor, L. Moreau, “Recording and reasoning
over data provenance in web and Grid services”, in Proc
of the ODBASE 2003, Vol. 2888 of Lecture Notes in
Computer Science, pp. 603-620, Catania, 2003.

[13] J. Huai, C. Hu, J. Li, H. Sun, T. Wo, “CROWN: A
service Grid middleware with trust management
mechanism”, in Science in China Series F: Information
Sciences, Springer-Verlag GmbH, Vol. 49, No. 6, 2006.

[14] A. Avizienis, “The N-version Approach to Fault-
Tolerant Software”, in IEEE Transactions on Software
Engineering, vol. 11, 1985.

[15] F. Di Giandomenico, L. Strigini, “Adjudicators for
Diverse Redundant Components”, in Proc of the 9th
IEEE SRDS, pp. 114-123, Alabama, 1990.

[16] N. Looker, M. Munro, and J. Xu, "A Comparison of
Network Level Fault Injection with Code Insertion," in
the Proc of 29th IEEE COMPSAC, Edinburgh, 2005.

[17] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,
"Simple Object Access Protocol (SOAP)," ed: 1.3,
http://www.w3.org/TR/soap/

[18] N. Looker and J. Xu, "Dependability Assessment of
Grid Middleware," in Proc of the 37th IEEE/IFIP DSN,
Edinburgh, vol. 1, pp 125-130, 2007.

[19] D. Zhang, J. Xu, and X. Li, “Dynamic Cross-Realm
Authentication for Multi-Party Service Interactions,” in
Proc of the 37th IEEE/IFIP DSN, Edinburgh, vol. 1, pp.
440-449, 2007.

[20] Jianxin Li, Jinpeng Huai, Jie Xu, Yanmin Zhu, Wei
Xue, “TOWER: Practical Trust Negotiation Framework
for Grids”, in Proceedings of the IEEE International
Conference on e-Science and Grid Computing,
Amsterdam, 2006.

[21] W. H. Winsborough, K. E. Seamons, and V. E. Jones,
"Automated Trust Negotiation," in Proc of DARPA
DISCEX, 2000.

[22] H. Wang, K. Brodlie, J. Handley, J. Wood, “A Service-
oriented approach to collaborative visualization”, in
Proceedings of the UK e-Science All Hands Meeting,
pp. 241-248, 2006.

[23] Y. Li, W. Huang, J. Zhao, “Roles of mesoscale terrain
and latent heat release in typhoon precipitation: A
numerical case study”, in Advances in Atmospheric
Sciences, Vol. 24, No. 1, pp.35-43, 2007.

444444444444

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 8, 2008 at 02:47 from IEEE Xplore. Restrictions apply.

