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SUMMARY

The networked intrusion detection system virtual appliance (NIDS-VA), also known as virtualized NIDS, plays
an important role in the protection and safeguard of IaaS cloud environments. However, it is nontrivial to
guarantee both of the performance of NIDS-VA and the resource efficiency of cloud applications because both
are sharing computing resources in the same cloud environment. To overcome this challenge and trade-off, we
propose a novel system, named CloudMon, which enables dynamic resource provision and live placement for
NIDS-VAs in IaaS cloud environments. CloudMon provides two techniques to maintain high resource
efficiency of IaaS cloud environments without degrading the performance of NIDS-VAs and other virtual
machines (VMs). The first technique is a virtual machine monitor based resource provision mechanism, which
can minimize the resource usage of a NIDS-VA with given performance guarantee. It uses a fuzzy model to
characterize the complex relationship between performance and resource demands of a NIDS-VA and develops
an online fuzzy controller to adaptively control the resource allocation for NIDS-VAs under varying network
traffic. The second one is a global resource scheduling approach for optimizing the resource efficiency of the
entire cloud environments. It leverages VM migration to dynamically place NIDS-VAs and VMs. An online
VM mapping algorithm is designed to maximize the resource utilization of the entire cloud environment.
Our virtual machine monitor based resource provision mechanism has been evaluated by conducting compre-
hensive experiments based on Xen hypervisor and Snort NIDS in a real cloud environment. The results show
that the proposed mechanism can allocate resources for a NIDS-VA on demand while still satisfying its
performance requirements. We also verify the effectiveness of our global resource scheduling approach by
comparing it with two classic vector packing algorithms, and the results show that our approach improved
the resource utilization of cloud environments and reduced the number of in-use NIDS-VAs and physical hosts.
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1. INTRODUCTION

With the rapid development of Internet and networking technologies, the emerging Internet of Things
(IoT) [1] is expected to be a future interconnection environment that connects computers, electronic
devices, and all other things that can be uniquely identifiable and linked to the Internet. Cloud
computing, as a new resource delivery and consumption model, can provide the virtual computing and
storage infrastructure for IoT environments to integrate various devices and process the big data
generated by them, which has become the key enabling technology of IoT. Recently, some IoT-
oriented cloud systems and services [2–5] are emerging and show great potential for future development.
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However, on the other side, due to the open and dynamic natures of cloud computing, several
security issues arise and pose great challenges to the application of cloud systems in the IoT
domain. In IaaS cloud environments, traditional security systems such as networked intrusion
detection systems (NIDS) cease to be effective in such kind of ‘virtualized’ environments. First,
traditional NIDS cannot monitor and analyze the intra-VM traffic (the network traffic occurs among
the virtual machines (VMs) hosted on the same physical server), because communications between
these VMs never reach the physical network. Second, server consolidation produces more traffic
than traditional non-virtualized environments, which significantly increases the burden of NIDS.
Lastly, network virtualization creates an overlay topology upon physical networks, and the
effectiveness and efficiency of traditional NIDS will be suffered because of the unawareness of the
existence of overlay networks.

Networked intrusion detection system virtual appliance [6] (NIDS-VA) (also known as virtualized
NIDS or vIDS) is an effective way to address the earlier issues. Physical NIDS devices are
virtualized and encapsulated into VMs, which can be easily deployed into physical hosts in cloud
environments and monitor the internal traffic between VMs without the need for exporting the traffic
outside of the physical host. Besides, NIDS-VAs allow users to consolidate and manage NIDS
systems and devices in a virtualized way which can, therefore, greatly reduce hardware costs and
simplify IT management. However, it is non-trivial for NIDS-VAs deployment in IaaS
environments. We identify three key challenges in the deployment and resource management of
NIDS-VAs as follows.

The first challenge is how to deploy a NIDS-VA into a physical server without affecting the
performance of other VMs hosted on the same physical server. In virtualized environments, physical
resources are shared among VMs, which are often consolidated for the efficient use of server
resources. The sharing of computing resources will result in resource competition between NIDS-
VA and the other VMs running on the same physical server. The resource competition will affect
both the performances of workload VMs and the detection accuracy of NIDS-VA. In order to
guarantee the performance of virtualized NIDS, a common-used approach is allocating enough
resources to the NIDS-VA according to its maximum resource demand. However, the NIDS may
not always work at its full load, which leads to resource idleness and waste thereby violating the
objective of server consolidation. This, therefore, reflects a trade-off between resource utilization and
performance of VMs in general and NIDS in particular. To improve resource efficiency without
sacrificing the performance of NIDS, one way could be establishing a precise mathematical model to
characterize the relationship between workloads and resource requirement of NIDS-VA.
Unfortunately, the complex nature of NIDS poses great challenges to accomplish this objective.

The second challenge is how to place NIDS-VAs and VMs to cover all the network traffic sent to or
received from the workload VMs while still maximizing resource utilization of physical servers and
minimizing the overall resource consumption of NIDS-VAs. For NIDS-VAs, because network traffic
loss may lead to intrusion undetected, any traffic including internal and external traffic should be
monitored by NIDS. To ensure that any intra-VM traffic is under inspection, an ideal approach is to
deploy a NIDS-VA for each workload VM, whereas this approach needs the same number of NIDS-
VA as the workload VMs and wastes lots of resources. Note that the operating system (OS) of NIDS-
VA will also occupy resources even when the NIDS application is idle. To reduce energy costs and
maximize platform revenue, the server resources used to host workload VMs and the number of the
deployed NIDS-VAs should be minimized. Therefore, the key problem is to find an appropriate
placement strategy of NIDS-VAs and workload VMs, which can achieve optimal resource utilization.

Third, in virtualized environments, NIDS often faces varying network traffic, and therefore, the
resource consumption will fluctuate accordingly. Besides, the applications in workload VMs often have
varying resource demands, for example, an application may request more resources during its running,
or else the service quality of the applications will be decreased dramatically. The dynamic characteristic
of NIDS-VA and workload VMs will lead to resource competition or resource underutilized. VM live
migration technique can be used to mitigate this problem by remapping VMs to different physical
servers, so the key issue is how to derive an online placement algorithm, which can dynamically adjust
the placement scheme adapting to the varying resource demands of NIDS-VAs and workload VMs.
Besides, for each adjustment, the times of live migration should be limited to a small extent.
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To address the earlier issues, we propose CloudMon, a resource-efficient NIDS-based IaaS cloud
monitoring system, which enables adaptive deployment and dynamic resource provision for NIDS-
VAs. Our major contributions are summarized as follows:

• A novel NIDS dynamic provision approach is proposed on the basis of fuzzy control theory,
which can continuously adjust resource allocation for NIDS-VA to deal with varying network
traffic while still satisfying the performance requirements of NIDS.

• The VM placement problem is modeled as a vector bin packing problem, and an offline VM
placement strategy is adopted to determine the most preferred placement scheme. Then, we
propose an event-driven online heuristic algorithm to derive the VM mapping scheme regarding
the dynamic characteristic of NIDS-VA and workload VMs.

• An online feedback-driven control system is developed to accurately adjust resource allocation
according to the NIDS’s performance requirement in a real-time manner. A prototype system is
implemented in our iVIC platform. Snort NIDS [7] and Xen hypervisor are used to evaluate the
effectiveness of our approach. Experimental results show that our feedback fuzzy control
approach can effectively allocate resource to NIDS-VA under time-varying network traffic while
still satisfying the performance requirements of NIDS. The results also show the effective and
efficiency of our VM placement and mapping algorithms.

The paper is organized as follows. We give a system overview of CloudMon in Section 2. Section 3
introduces our fuzzy control approach for adaptive resource allocation, and Section 4 presents the
design of our cloud-oriented VM placement algorithms for global resource management. We introduce
the implementation of CloudMon in Section 5. The performance evaluation is given and analyzed in
Section 6. We discuss related work in Section 7. Finally, we conclude the whole paper in Section 8.
2. SYSTEM OVERVIEW

This section discusses the basic design principle and system architecture of CloudMon. The background
and terminology of CloudMon are first introduced and defined in the following subsections.

2.1. Background and terminology

An IaaS cloud environment is usually composed of hundreds or even thousands of physical hosts
(physical servers). Each host consists of processor, memory, storage as well as network interfaces.
For simplicity, we assume all the physical hosts are homogenous. The hosts are interconnected by
high-speed Gigabyte LAN. Each host runs a virtual machine monitor (VMM) and hosts one or more
VMs. A VM may communicate with either VMs inside of the cloud computing environment or the
destinations outside. We use internal traffic to refer to the network traffic among VMs and use
external traffic to represent the network traffic going to the outside world. It is worth noting that
internal traffic can still be divided into two types: intra-VM traffic and inter-VM traffic. Intra-VM
traffic represents the network traffic among VMs, which are located in the same physical host, thus
will not go outside of the physical host; on the contrary, inter-VM traffic is transmitted by VMs
hosted by different hosts, and this kind of network traffic will traverse the physical network
interface and switch.

Figure 1 shows a generic framework of a NIDS-based cloud security monitoring system, which
monitors the whole network traffic of the cloud environments, including internal traffic and external
traffic. The NIDS software and the underlying OS are encapsulated into a VM, which is referred to
as NIDS-VA. Each host is equipped with one or more NIDS-VAs. The NIDS-VA is responsible for
inspecting incoming and outgoing network traffic of workload VMs hosted on the same physical
host, and it shares the resources such as CPU and memory with other VMs. A virtual network
(vNet) is used to connect the NIDS-VAs among different hosts and the control center and to isolate
the network traffic among NIDS-VAs from normal traffic among VMs. The intrusion detection
results such as intrusion alerts and risk warnings generated by the NIDS-VAs are reported to the
control center for taking actions and further analysis.
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Figure 1. A generic cloud monitoring framework based on distributed networked intrusion detection
system (NIDS).
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2.2. Architecture

CloudMon is designed on the basis of the earlier generic monitoring framework, while it focuses on
the performance and resource efficiency issues, which have not been considered and discussed in
existing systems. Besides the prerequisite that each VM, if needed, is under the monitor of at
least one NIDS-VA, CloudMon has two distinguished design requirements: (1) providing
performance guarantees for both the NIDS-VAs and the workload VMs and (2) maximizing the
resource utilization of cloud environments monitored by distributed NIDS-VAs. To meet the two
requirements, we propose the architecture of CloudMon (as shown in Figure 2), which can
achieve resource efficiency of cloud environments without sacrificing the performance of both the
NIDS-VAs and the workload VMs.

CloudMon is composed of two main components: local resource manager (LRM) and global
resource scheduler (GRS). LRM is an in-host dynamic resource manager, which allocates resources
for NIDS-VAs and workload VMs according to their resource requirements. The core of LRM is an
online fuzzy controller, which can adaptively control the resource allocation for NIDS-VAs under
varying network traffic. It leverages fuzzy model to characterize the complex relationships between
performance and resource consumption of NIDS and implements a dynamic resource provision
approach to efficiently provide resources to NIDS-VA while still fulfilling its performance demand.
GRS aims at optimizing the resource utilization of the entire cloud. It has a global view over the
resources of cloud environments and uses a VM mapping algorithm to maximize the resource
utilization of the entire cloud environments. GRS takes into account the resource usage of both
NIDS-VAs and workload VMs. To deal with the varying of resource needs, an event-driven VM
online mapping algorithm is presented to guide the placement and migration of VMs so as to
mitigate system hotspots and maintain high resource utilization. GRS makes placement and
Figure 2. The architecture of CloudMon.
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migration decisions based on the resource utilization information reported by LRM, and LRM is
responsible for executing the real VM operations such as start, stop, and migrate on the basis of the
decisions from GRS.
3. A DYNAMIC RESOURCE PROVISION APPROACH FOR NIDS-VA

For NIDS-VA deployment and resource management in an IaaS cloud environment, the first step is to
deploy each NIDS-VA into a physical server and determine how much resource should be allocated to
it. The successful deployment of a NIDS-VA needs an accurate resource provision approach and
should satisfy two requirements: (1) allocating appropriate resource to it to avoid resource waste
and (2) providing performance guarantees for both the NIDS-VA and the other VMs hosted on the
same physical server.

3.1. Problem statement and analysis

For simplification, we only consider CPU and memory resources. In addition, we assume that input/
output (I/O) resources including disk and network I/O are sufficient. But it is important to note that
the CPU cycles or memory pages consumed when handling I/O operations are considered here.
Furthermore, we assume the CPU and memory allocation can be adjusted through VMM interface
when the NIDS-VA is running. It is reasonable because most VMMs such as Xen and VMware
ESX server support run-time CPU and memory adjustment.

In this section, we focus on investigating how resource provision will affect the performance of
NIDS. With respect to CPU and memory allocation, packet drop rate (DR) is the most relevant
performance metric. Therefore, we choose it as the performance indicator. In the rest of this paper,
packet DR and performance of NIDS are used interchangeably. We use DR to represent the packet
DR. Because no NIDS can guarantee zero packet loss, we define a target drop rate TDR. If
DR≤TDR, we conclude the performance of NIDS to be satisfactory.

If the resource allocation is too small, NIDS will experience performance degradation and allow
malicious packets to enter the network undetected. However, if the NIDS is over-provisioned, it will
lead to poor resource utilization and resource waste. There is a trade-off between performance and
resource requirements, especially for IaaS environments in which NIDS-VA shares physical
resources with other VMs. In order to elaborate this trade-off, we give the following example.

Example
Consider such a scenario where one NIDS virtual appliance and one VM are located on the same
physical host. We assume TDR to be 0.02, that is, the acceptable DR is 2%. Now, we assume the
VM needs 50% CPU to fulfill the performance requirements of the application it contains. But the
NIDS virtual appliance currently occupies 60% CPU, while its DR is 1% or even lower. Therefore,
there exists a resource competition so that the QoS requirement of the application cannot be fulfilled.
However, if the DR of NIDS can be 1.8% when allocating 50% CPU to the NIDS, we can fulfill the
requirements of both the NIDS and the VM. In other words, if we adjust the CPU allocation of NIDS
to 50%, both the NIDS and the application can be satisfied. However, this requires knowledge of the
relationship between resource demands and performance.

From the earlier discussion, we can conclude that the key problem is to, given a network traffic rate,
determine appropriate resources that need to be allocated to the NIDS-VA to satisfy the performance of
NIDS APP. Figure 3 shows the model of NIDS-VA.

The CPU allocation, memory allocation, and network traffic affect the performance of NIDS in
varying degrees as described as follows.
CPU
CPU overload directly leads to packet drops. A NIDS is a soft real-time system where processing
needs to keep up with the input network traffic and failing to do so will result in packets being
dropped. Therefore, it is very important to determine the CPU demands of NIDS, especially in a
Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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Figure 3. A model of networked intrusion detection system (NIDS) virtual appliance.
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shared environment. Unfortunately, it is a non-trivial task. First, the complex nature of detection
engine makes it difficult to estimate its CPU demands. Detection engine is the most CPU
consuming part, and it is responsible for analyzing network traffic on the basis of detection rules.
However, different rules will incur different processing time. For example, some rules only inspect
the packets header, while others may deep into the payload for further analysis. On the other hand,
it is very hard to estimate the overall resource consumption by the whole NIDS appliance. This is
because the overall resource consumption includes the resource consumption performed by NIDS
APP as well as the NIDS-VA. For example, network I/O operations in OS Kernel also consume
CPU cycles.

Memory
Memory overload could also result in packet drops. Historically, a NIDS often consumes a large
amount of memory pages. First, NIDS operates in a stateful fashion, that is, it needs to store
connection states for further analysis. Second, when analyzing network traffic, NIDS requires
memory to store the intermediate results. Last, but the most important, NIDS will buffer packets
before analyzing them to keep up with the high traffic speed. In heavy traffic load conditions, the buffer
is filled up quickly. When it is full, packets may drop. For the IDS-VA, physical memory is first allo-
cated to NIDS-VA, and when NIDS APP needs memory, it will issue malloc to request memory from
the OS of NIDS-VA. If the request cannot be satisfied, NIDS APP may crash. For modern OSs, which
support virtual memory and swapping, the NIDS APP will not crash, but its performance will be
greatly degraded because of frequent swap activities.

Network traffic
The patterns of network traffic being analyzed influence the resource usage; therefore, it will also affect
DR indirectly. First, a NIDS consumes different processing time for different protocols. A study [8]
revealed that Snort NIDS spends about 30% processing time for pattern matching, while for web traf-
fic, the cost increased to 80%. Second, the proportion of suspicious packets affects the processing
speed of NIDS. More resources are required for alerting and logging when dealing with suspicious
packets. Last, heavy traffic load will incur packet loss of NIDS-VA when the resource provision is in-
adequate. The experimental results (Section 6.2) show that when CPU provision cannot fulfill the re-
source demand of network traffic, large amount of packets fail to be received by the Kernel of
NIDS-VA, much less being captured by NIDS APP.

Through the earlier analysis, we can conclude that NIDS’s performance could be influenced by many
factors. It is difficult to construct a precise mathematical model to characterize the correlation between
performance and resource consumption, especially when handling a variety of network traffic.
3.2. A fuzzy controller

Instead of designing a mathematical model to characterize the correlation among network traffic load,
resource requirements, and performance of NIDS-VA, we resort to feedback control techniques to
adaptively allocate resources to meet its performance requirements. We have considered traditional
feedback control systems, most of which require specifying the mathematical models in advance.
However, NIDS-VA is too complex to be represented by a mathematical model. To solve this
problem, fuzzy models [3] have been used to characterize the complex relationship between
performance and resource demands. Fuzzy logic is effective in dealing with the uncertain, imprecise,
or qualitative decision-making problems, which has been successfully applied into control systems
Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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to handle problems that are too complex to be modeled by conventional mathematical methods. As a
result, we designed a fuzzy logic-based controller, which controls the resource allocation to the
NIDS-VA based on a set of linguistic IF–THEN rules; thus, it is not necessary to establish a
mathematical model for the NIDS-VA. Our fuzzy controller meets the following three design
requirements: (1) the performance of NIDS-VA can be guaranteed; (2) appropriate resources are
allocated to the NIDS-VA to avoid competing resources with other virtual servers; and (3) high
resource utilization could be maintained.

As shown in Figure 4, a fuzzy controller controls the resource allocation to the NIDS-VA according
to the performance feedback of the NIDS-VA. The input of NIDS-VA is the resource allocation, and it
should be dynamically adjusted to meet the resource requirements of time-varying network traffic
workloads. The output of the NIDS-VA is the performance metric being measured, and it will be
fed back to the fuzzy controller. As mentioned earlier, we choose the DR as the performance
indicator because it is the most relevant metric regarding the resource allocation of an NIDS. The
fuzzy controller takes DR deviations as input and outputs a control action U on how much resource
will be allocated. Two kinds of DR deviations are considered here: e and ec. Those are

e ¼ current DR� TDR

ec ¼ et � et�1

time interval
(1)

The control action will be executed by the VMM to adjust the actual resource allocation for the
NIDS-VA. Figure 4 shows a feedback control loop, and the goal of our fuzzy controller is
continuously adjusting the resource allocation to approximate the DR target.

The structure of our fuzzy controller is shown in Figure 5. The fuzzy control process is divided into
three steps. The first step is fuzzification that maps the input variables into fuzzy sets by membership
functions; the second step is inference that takes fuzzy sets as input and makes decisions for what
action to take based on some verbal or linguistic rules of if-then form; the last step is defuzzification
that translates the linguistic control actions into quantifiable outputs. Table I shows the details of our
fuzzy controller.
Figure 4. Fuzzy controller for dynamic resource allocation.

Figure 5. Building blocks of a fuzzy controller.
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Table I. the details of our fuzzy controller.

Description

State variable The input of the controller here is e and ec
Control variable The output of the controller here is U
Fuzzy set The input and output are normalized on the interval [0, 1]. The space of input

and output is partitioned into seven regions: negative big (NB), negative
middle (NM), negative small (NS), zero (ZO), positive small (PS), positive
middle (PM), positive big (PB). Each region is associated with a linguistic
term. The membership function of the fuzzy sets is TRIANGULAR.

Fuzzification We choose Singleton fuzzifier that measures the state variables without uncertainty.
Fuzzy rule We collect some expert knowledge through comprehensive experiments, and design

some linguistic rules such as: ‘IF e IS small negative and ec IS small negative THEN
U IS small negative’. We summarize the rule into the following rule table.

Inference method We choose the Mandani inference method because it can deal with both fuzzy input
and output.

Defuzzification Center of gravity method is selected for defuzzification.

B. LI, J. LI AND L. LIU
4. MAPPING ALGORITHMS FOR OPTIMIZING THE RESOURCE EFFICIENCY OF CLOUD
ENVIRONMENTS

In the previous section, a dynamic resource provision approach has been presented for each NIDS-VA,
and in this section, we are going to further investigate how to place the NIDS-VAs and workload
VMs in a resource-efficient way while still fulfilling the performance requirements of both of
them. Recall that a prerequisite for successfully monitoring a cloud computing environment is
to cover all network traffic sent or received by each VM. An intuitive way is to equip each
VM with a NIDS-VA. This method will result in large amounts of resources wasted, because
both the OS of NIDS-VA and the NIDS sensor software will occupy a certain amount of
resources even in an idle state (idle state means no traffic is under detection). Thus, the more
NIDS-VAs running, the more resources wasted. For a distributed NIDS system, to maximize its
resource efficiency and minimize resource waste, the key is to minimize the number of NIDS-VAs
used to cover the network traffic transferred by all the VMs. Besides, the overall resource
utilization of the cloud environments should also be considered for cost saving and energy
conservation reasons. Next, we will elaborate this problem.
Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
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4.1. Problem analysis

The problem described earlier can be decomposed into two subproblems: a traffic-to-NIDS mapping
problem and a VM-to-host mapping problem.

A. Traffic-to-NIDS mapping problem

To monitor intra-VM traffic, at least one NIDS-VA should be deployed into each physical host. In order
to minimize the number of NIDS-VAs and to simplify the problem, we assume that only one NIDS-VA is
deployed for each physical host. The network traffic of all the VMs on this physical host is monitored by this
NIDS-VA. The network traffic, which a NIDS-VA can process, is limited and MaxCap is used to represent
its maximum capacity. Therefore, our problem is to determine an appropriate placement scheme to map a set
of VMs’ network throughputs to a minimum number of NIDS-VAs with the constraints that the sum of the
network throughputs of the VMs should not exceed the MaxCap of the NIDS-VA for each physical host.
This problem is a classic bin packing problem with NP-completeness.

B. VM-to-host mapping problem

On the other side, in IaaS cloud environments, VMs are usually consolidated tightly to maximize
resource utilization and minimize the number of online physical hosts for energy conservation and cost
saving reasons. While a physical host is shared by the workload VMs and the NIDS-VA hosted on it,
the sum of resource consumptions of both the workload VMs and the NIDS-VA should not exceed the
host resource capacity. A VM-to-host mapping schema is needed to minimize the number of online
physical hosts without affecting the performance of both the workload VMs and the NIDS-VAs, with
the constraint that for each host, the overall resource consumptions of both the hosted workload VMs
and the NIDS-VA should not exceed the host’s resource capacity. This problem is not a classic bin
packing problem because the resource consumption of NIDS-VA is related with the network traffic it
monitors. Figure 6 illustrates an example with six VMs and two NIDS-VAs. The number in the center
of red box represents the resource consumption of a NIDS-VA. In Figure 6, we can see that the
resource consumption of a NIDS-VA varies with the changing of network traffic under monitor. While
in classic bin packing problems, the packing items are invariable.

To tackle this problem, we first break down the resource consumption of a NIDS-VA into two parts:
(1) Resourceidle, the resource used to run an OS and an idle NIDS and (2) Resourceload, the resource
consumption caused by NIDS workloads (network traffic). We adopt the model proposed by [9] that
hypothesizes that the resource consumption of a NIDS is orthogonal decomposition, which estimates
aggregate resource requirements as the sum of the individual requirements. Based on this hypothesis,
the overall resource consumption of a NIDS-VA can be broken down into two parts: (1) Resourceidle,
the resource used to run an OS and an idle NIDS and (2) the sum of resource consumptions caused by
each VM’s network traffic. Figure 7 gives a simple example. VM1 represents the resource
consumption of this VM, while RVM1 represents the resource consumption of NIDS-VA caused by
VM1, and we treat VM1 and RVM1 as a whole and then consider putting them on which host. The
problem described earlier can be transformed to a classic bin packing problem: the bin size is the
host capacity minus the resource consumption of idle NIDS, and the items to be put into the bins
are the VMs’ resource consumption plus the resource consumption of NIDS caused by the traffic
workload of this VM. We assume that the resource consumptions of VMs are known beforehand,
and we use the fuzzy control method proposed in Section 3 to derive how much resource should be
allocated to a NIDS-VA for dealing with each VM’s network traffic.
Figure 6. an example with six virtual machines (VMs) and two networked intrusion detection system
virtual appliances.
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Figure 7. Breakdown of networked intrusion detection system resource usage.

B. LI, J. LI AND L. LIU
The optimization objective of traffic-to-NIDSmapping problem is to minimize the number of NIDS-VAs,
while the objective of VM-to-host mapping problem is to minimize the number of physical hosts. In fact, the
two objectives are consistent, because we assume that only one NIDS-VA is deployed for each physical host.
We combine the two problems into a single-objective constrained optimization problem, which is also known
as a multidimensional vector packing problem (MVPP) [10]. MVPP is a variant of multidimensional bin
packing problem (MBPP). The difference between them is that dimensions are independent for MVPP but
dependent for MBPP dimensions. In the one-dimensional case, MVPP and MBPP are identical. The
classical bin packing was one of the original NP-complete problems [11]. MVPP is a generalization of the
classical one-dimensional bin packing problem, and it is clearly NP-complete.

4.2. An offline mapping algorithm

An virtual environment is modeled as a set P= {1,2, …, m} of physical hosts indexed by l and a set of
NIDS= {1,2, …, m} indexed by i, with finite capacity Cp and Cids, respectively. They are shared by a
set VM={1,2, …, n} of VMs indexed by j. We assume all the physical hosts are homogenous.
Associated with each VMi are CPU consumption VMi

c, memory consumption VMi
m, and network

traffic rate VMi
nt. We use NIDSc and NIDSm to denote the CPU and memory consumption of NIDS in

idle state, respectively. We define

Pl ¼ 1 used
0 unused

�

Ajl ¼ 1 VMj→Pl

0 otherwise

�

Aji ¼ 1 VMj monitored by IDSi

0 otherwise

�

For any j, if i= l, then Ajl=Aji because the network traffic of a VM can only be monitored by NIDS
hosted on the same physical host. Because each VM can only be put into one host, so we have

∑
m

l¼1
Ajl ¼ 1 and ∑

m

i¼1
Aji ¼ 1

Then, we formula the problem as an integer linear program problem:

Minimize : ∑
l
Pl (1)

Such that ∑
m

l¼1
Ajl ¼ 1; 1≤j≤n (2)

NIDSc þ ∑
n

j¼1
Ajl�VMc

j≤C
n
p; 1≤l≤m (3)
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NIDSm þ ∑
n

j¼1
Aji �VMm

j ≤C
m
p ; 1≤i≤m (4)

∑
n

j¼1
Ajl �VMnt

j ≤Cids; 1≤l≤m (5)

Ajl ∈ 0; 1ð Þ; 1≤ j ≤ n; 1 ≤ l ≤ m (6)

Constraint (2) states that every VM should be placed into a physical host. Constraints (3) and (4) ensure
that the NIDS’s idle resource consumption plus the resource consumptions of hosted VMs do not exceed
the host’s resource capacity. Constraint (5) ensures that the sum of the network traffic rate of each VM
does not exceed the capacity of NIDS-VA. Constraint (6) shows that a VM can be either entirely put
into a host or not.

To solve the earlier integer linear program problem, we adopt an efficient mathematical algorithm,
which is proposed by Rao et al. [12], based on the combination of (near-)optimal solution of the linear
programming relaxation and a greedy (modified first-fit) heuristic. In [12], the authors provide a 2-OPT
guarantee for large inputs irrespective of the dimension d. This is a notable improvement over the
previously known guarantee of ln(d+1+ ε) for any ε≥ 0and higher dimensions d> 2. Because of
space limitation, we will not present the details of the algorithm.
4.3. An online mapping algorithm

Our discussion thus far has assumed that the resource consumptions of VMs and NIDS-VAs at run-
time do not change after initial phase. However, in a real cloud environment, the resource
requirements of VMs are usually changing dynamically. As for NIDS-VA, its resource utilization
varies with the changes of network traffic workloads. The inflation of VMs’ resource requirement
will lead to resource competition, which may affect the performance of both workload VMs and the
NIDS-VA hosted on the same physical host; the deflation of VMs’ resource requirement will result
in resource idleness and low utilization. Besides, VMs generally arrive and depart dynamically,
which aggravates the earlier problem. Thus, a dynamic resource allocation approach is needed,
which can allocate resources based on the real-time resource requirements of VMs with a variety of
workloads and an online VM mapping algorithm which can dynamically adjust the VM-to-host
mappings to deal with resource competition, mitigate system overload, and maintain high resource
utilization. The dynamic resource allocation of NIDS-VA is implemented using our fuzzy-control-
based resource provision approach proposed in Section 3. As for the dynamic resource allocation of
application VMs, research work [13] has given a feasible solution, and our dynamic resource
provision approach is also an option. Next, we will elaborate the model and design of our VM
mapping algorithm.
4.3.1. An event-driven model. There are four kinds of events which can trigger VM remapping. The
first is VM arrival. To minimize the number of online hosts, our algorithm should try to put the new
arriving VM into an existing online host without using a new one. The placement of a new arriving
VM will affect the NIDS-VA located on the same host in two aspects: (1) the network traffic of the
arriving VM increases the workloads of NIDS-VA, and a feasible placement should ensure that all
the traffic workloads of NIDS-VA do not exceed its maximum capacity and (2) the resource
requirements of NIDS-VA will be enlarged because of the increasing of network traffic workloads
caused by the arriving VM. The second is VM departure, which may release some resources and
lead to resource underutilized. Our algorithm should try to vacate an online host and hibernate it to
save costs and maintain high utilization. The third is the inflation of VM’s resource requirements,
which may result in system overhead and performance degradation. The last is the deflation of
VM’s resource requirements, which may lead to low utilization. NIDS-VA is a special type of VMs.
Its resource inflation and deflation should also be considered. Just like the first two events, our
algorithm should try to relocate the VMs to use the minimal online hosts while still satisfying VMs’
performance requirements.
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The working model of our algorithm is illustrated in Figure 8. The algorithm handles event sequence in
an online manner and output a sequence of plans. Upon receiving each event, it generates a VM
remapping plan including a series of VM placement and migration operations, which guides the
remapping of VMs.

4.3.2. Algorithm design. The problem described earlier shows some similarities with the online
vector packing problem [14]. However, there are two main differences between the two problems.
First, in our problem, the packing item’s size (resource consumptions of a VM) is changing over
time, while the item’s size is fixed for online vector packing. Second, no migration of items is
allowed for online vector packing problem. Because of such differences, algorithms suited to online
vector packing problem cannot be applied to our problem.

We design a heuristic VM mapping algorithm based on the idea proposed in our previous work [15]. The
basic idea is that the smaller items are recursively replaced by bigger items until all items are packed. It is based
on an obvious observation that the smaller items are easier to be inserted into the gaps of bins. Our contribution
in this paper is to redesign our previous algorithm and extend it from one-dimension to multi-dimension.

In order to reduce the number of reinsertions and the complexity of the algorithm, we divide the
region of the VM size into several subintervals, and each subinterval represents a level. A modified
Best-Fit algorithm, Best-Fit-3D’, is employed to pack the newly arrived VM. Best-Fit-3D’ differs
from traditional Best-Fit algorithm in two aspects. First, when putting a new VMi using Best-Fit-
3D’, the VMs whose levels are lower than VMi will be temporarily ignored. After putting VMi, the
VMs hosted on the same host whose levels are lower than level of VMi are extruded in ascending
order until the host is packable. A question is about how to compare the levels of two VM vectors
because two dimensions may have an opposite comparative result. Second, for MVVPs, different
dimensions may have different best-fit degrees, and a unified metric is required to characterize the
degrees among multiple dimensions. To answer the earlier questions, two definitions are given.

Definition 1
For two multidimensional vectors, VM1 and VM2, the level of VM1 is higher than the level of VM2 if:
(1) for each dimension the level of VM1 is higher than or equal with the level of VM2 and (2) at least
in one dimension the level of VM1 is higher than the level of VM2.

On the basis of Definition, it can be easily derived that the algorithm is convergent because the
algorithm will eventually stop when the VMs with the smallest level are placed into the hosts. It is
worth noting that the number of VM levels will directly influence the migration times of VMs. Next,
we define a unified metric for measuring the fitness of best-fit for multidimensional vector packing.

Definition 2
For a host with n dimensional resources, Hosti represents the resource utilization of the ith dimension.
The fitness function of Best-Fit’ is defined as follows:

Fitness ¼ ∏
n

i¼1

1
1� Host i
Figure 8. Working model of online virtual machine (VM) mapping algorithm.
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Our online VM mapping algorithm is described as follows:
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To avoid the overhead of frequent VM migrations due to the varying of VMs’ resource demands, two
thresholds are defined in our algorithm: under-utilized and overloaded. Only when the resource utilization
of a host is below under-utilized or above overloaded, a VM remapping event will be triggered.
5. IMPLEMENTATION

In this section, we will present the implementation details of CloudMon, show some technical details
of the NIDS-VA resource manager, and introduce our implementation experience in iVIC finally.
5.1. CloudMon

As mentioned before, CloudMon is composed of two main components: GRS and LRM. As shown in
Figure 9, GRS runs the information service (IS), VM mapping manager (VMMA), and event and job
dispatcher (EJD). IS periodically receives the resource usage information (such as resource utilization,
etc.) of VMs and hosts from resource monitor module located in LRM; this information will first be
stored and then be sent to EJD. EJD receives the events from users (e.g., a user submit an
application VM to run) and IS (e.g., a VM has to be remapping because of the overload of a host)
and delivers them to VMMA. VMMA is responsible for generating VM placement and migration
plans. It can work in two modes: offline and online. When working at the offline mode, a VM
mapping plan will be generated on the basis of the resource utilization information stored in IS. In
the online mode, VMMA receives the VM arrival, VM departure, and resource change events sent
by EJD. It will generate VM mapping scheme composed of a series of VM placement and migration
operations. The scheme will be sent back to EJD. EJD decomposes the scheme to a series of
placement and migration commands and then dispatches them to the VM manager of LRM. Upon
receiving these commands, VM manager will invoke the VM management interface of the
hypervisor to execute them. NIDS-VA manager is the core module of LRM. It controls the resource
allocation of NIDS-VA, which is composed of fuzzy controller, NIDS performance monitor and
allocation actuator. This will be explained in detail in Section 5.2.

We implement our global resource management framework using Python. The offline and online
VM mapping algorithms are implemented in VMMA. The communication between control panel
and local services is based on SOAP protocol. In the VM manager, an adaptive provision method
[13], has been adapted to adjust the resource allocation of VM during run-time. Xen’s non-work
conserving credit scheduler is also employed by the VM manager to control CPU allocation. The
VM management function in VM manager is implemented using Xen’s Python management API to
start, stop, and migrate VMs. By querying xentop, the resource monitor obtains real-time
performance statistics of each VM, which includes CPU and Memory usage.
Figure 9. The implementation of CloudMon.
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Figure 10. Fuzzy-control-based resource provision architecture.
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5.2. The fuzzy-control-based NIDS-VA resource manager

Currently, NIDS-VA resource manager is working on Xen hypervisor, we choose Debian lenny as an
OS for dom0, NIDS-VA, and workload VMs. We use Snort NIDS because it is the most widely used
open source network intrusion detection system. The system architecture is illustrated in Figure 10.

In Xen, domain 0 is a special privileged domain, which serves as an administrative interface to Xen.
As shown in Figure 10, three modules of NIDS-VA resource manager are in domain 0. The performance
sensor module periodically collects DR statistics from the performance monitor plug-in of NIDS APP and
sends DR data to the fuzzy controller module. The fuzzy controller consists of four components. First, the
fuzzifier will map the DR data into some fuzzy values by given membership functions. Then, the inference
engine will infer from the fuzzy values to make decisions and produce the output actions according to the
fuzzy rules stored in the rule base, the output actions is also fuzzy values. Last, the defuzzifier will
combine the output values to give a crisp value, the actual resource allocation for the NIDS-VA. The
allocation actuator will execute the resource allocation actions made by the fuzzy controller through
Xen interface. It is worth noting that the performance sensor and allocation actuator communicate with
the fuzzy controller using the TCP protocol, which means the fuzzy controller can be located at any
place as long as it has network connection with other modules, thus achieves good scalability. The
enforcement of new resource allocation made by the allocation actuator will impact the performance of
NIDS software inside the NIDS-VA, and the performance monitor component of NIDS software will
record the DR data and send them to the performance sensor through XenStore channel. It is the end of
a control loop, and a new one will begin.

The performance sensor is implemented as a Linux daemon. Besides periodically collecting DR data, it
also gathers real-time performance statistics of the NIDS-VA through xentop, such as CPU usage and
network throughout. The fuzzy controller is implemented in C programming language in consideration of
performance. The TRIANGULAR membership function is employed to map the input into fuzzy values.
The inference engine is implemented using the Mandani inference method. Fuzzy rules, together with
state variable, control variable, and fuzzy sets, are stored in a text file and loaded into the inference engine
when the fuzzy controller is started. The allocation actuator is responsible for enforcing the CPU and
memory adjustment decisions. For CPU scheduling, Xen credit scheduler has been chosen in non-
working conserving mode, which provides strong performance isolation. Memory ballooning mechanism
is adopted for run-time memory allocation adjustment. The performance monitor plug-in of Snort is
modified to transmit the real-time performance data outside of theVA. It is undesirable to use network for
data transmission, because network transmission will disturb the detection of NIDS. An efficient
performance data transmission mechanism is added into Snort that leverages the XenStore mechanism to
exchange information between domain 0 and NIDS-VA without bothering the network.
5.3. Implementation in iVIC

The prototype of CloudMon has been implemented in iVIC‡ cloud platform. iVIC is a typical IaaS cloud
environment that enables users to dynamically create and manage various kinds of virtual resources such
‡Http://www.ivic.org.cn
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Figure 11. Networked intrusion detection system virtual appliance deployment in iVIC.
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as VMs, virtual clusters, and vNets. As a basic security service of iVIC, CloudMon can detect network
attacks and intrusions and protect VMs and vNets from being attacked and intruded.

As shown in Figure 11, users can easily deploy NIDS-VAs into iVIC environments through drag-
and-drop operations. In Figure 11, an NIDS-VA is deployed into a host machine and monitors a
VM§ hosted on that machine. We implement a user-friendly interface using ruby-on-rails. Users can
start or cancel the monitor of a given VM through dragging it on or off the NIDS-VA. CloudMon
supports exporting the network traffic of a VM outside of the host machine, which enables the
NIDS-VA to monitor the network traffic of a VM on another host.

CloudMon has been integrated into the implementation of iVIC. Figure 12 shows a detailed
information page of a vNet. This page is refreshed every 5 s, and users can monitor the security
status of a vNet and its VM nodes in a real-time manner. As shown in Figure 12, the two VM
items, which are marked as red, indicate that the two VMs are under attacks. CloudMon is able to
detect 220 types of attacks and has obtained about 40,000 attacks samples.
6. EXPERIMENTAL EVALUATION

In this section, the experiment configuration will be introduced, and experiment results will be
analyzed and discussed.

6.1. Experiment setup

A series of experiments have been conducted to evaluate the effectiveness of our approaches. Our
experimental environment is based on an iVIC cloud pool consisting of 64 physical servers with
Intel Core2 Quad 2.83GHz, 8G RAM, Linux 2.6.26 operation system, Xen 3.2 hypervisor, and
§In CloudMon, a VM being monitored by a NIDS-VA is shown in a list below the icon of the NIDS-VA.
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Figure 12. Attacks being identified by CloudMon.

CLOUDMON: A RESOURCE-EFFICIENT NIDS-BASED CLOUD MONITORING SYSTEM
gigabit Ethernet connection. We use one physical server to run the global control panel, and seven of
them are used as clients to send requests to server application. An NIDS-VM image is prepared that
encapsulates our modified version of Snort 2.7 and mounts a 2GB disk image as the primary
partition and a 1GB image for swap partition.

6.1.1. NIDS workloads generation. Network traffic traces have been collected to test the performance
of Snort. Tcpdump is used to capture and save the network packets into a pcap trace file. Tcpreplay is
used to resend the captured packets from the trace file, and it also provides the function to control the
speed at which the traffic is replayed. In order to impose various loads on Snort, we collect various
kinds of network traffic traces. For example, we capture normal network traffic traversing the
gateway of our lab; we also use some tools such as nessus, nmap, and snot to generate malicious
packets and then capture them using Tcpdump.

6.1.2. Virtual machine workloads generation. Three types of VM workloads have been selected to
simulate the diversity of applications in a cloud environment. For compute-intensive applications,
we use Spec CPU 2006 [16] to generate different levels of CPU and memory loads. We choose
tcpdreplay, netpipe, and BitTorrent [17] as a test case for network applications. By controlling their
packet sending rates, we can generate various types of network traffic. We also choose some
commonly used applications such as Kernel Compilation, Apache Web server, and MySQL server.
Each application is encapsulated into a VM, which will start automatically with VM boot. Note that
the execution time of these applications is different, and we choose them to simulate various
workload lifetime. For example, Apache Web server and database server are long-running
workloads, while the workload of Kernel Compile is shorter comparatively. During the experiments,
workloads have been created randomly with earlier applications, which have been submitted to the
cloud pool with a given rate. Each VM will be given a lifetime; when the workload VM runs out of
its time, it will be stopped immediately, and the resource occupied by the VM will be released.
6.2. Experimental results

This section summarizes the experimental evaluation of CloudMon. Experiment groups 1, 2, and 3 are
used to evaluate the suitability of the proposed fuzzy control system for dynamic resource allocation to
NIDS-VA with time-varying workloads. The performance comparison of CloudMon and Hyperspector
[18] is given in experiment group 4. Experiment group 5 is used to test the effectiveness and efficiency
of our global resource manager.
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Experiment group 1. Before we begin to test the performance of our fuzzy controller, we first evaluate
how resource allocation will affect the DR of Snort. We set a very low CPU allocation 10% to the
NIDS-VA, which means that a VM cannot use more than 10% CPU time, even if there are idle
CPU cycles. We allocate 192M memory to the NIDS-VA. Tcpreplay is used to send 100,000
packets at a speed of 50mbs from a load-generating client.

First, the CPU allocation is first investigated. It is expected that the DR could be high, because the
CPU allocation is very low. But, unexpectedly, the DR of Snort is only 3.5%. We notice that the
number of packets that Snort captured is 42,378, which are far less than what the client has sent. At
first, we thought the DR data produced by Snort could be wrong, but through monitoring the Tx and
Rx of NIDS-VA reported by Proc file system, we noticed that the number of received packets is
consistent with the number of the packets Snort has captured. We also observed the number of
packets that arrived at the bridge port connected with Peth0, and it is almost the same with the
number of the packets client has sent. This is to say, some packets have arrived at the bridge but did
not reach the Kernel of NIDS-VA. We gradually increase the CPU allocation, and the dropped
percentage of NIDS-VA decreases accordingly. As shown in Table II, when the CPU allocation
reaches 60%, all packets are received by NIDS-VA. Therefore, we can come to a conclusion that if
the CPU allocation is inadequate, the NIDS-VA will also drop packets. A strange phenomenon is
that Snort has gained relatively more CPU cycles than NIDS-VA (Snort’s DR is relatively low).
Generally speaking, the operations in Linux networking system are Kernel-mode operations, and
they cannot be preempted by user-mode application such as Snort. Therefore, we thought that the
Snort process will be starved. This phenomenon is probably related with the scheduling strategy of
Xen scheduler and Linux networking subsystem. We also observed that when the CPU allocation of
Snort is increased, the DR reported by Snort also changes. The actual DR consists of two parts: the
DR Snort reports and the DR of NIDS-VA. In the following experiments, we calculate the DR by
summing these two parts.

We notice that when the CPU allocation is 100%, Snort’s DR is 1.5%. Recall that in the earlier
experiment, the memory allocation is 192M. We increase the memory allocation to 256M this time
and repeat the experiment. The results show that Snort’s DR decreases, especially for 80% and
100% CPU allocation, Snort’s DR is nearly 0%.

Experiment group 2. From the first experiment we can see, the performance of NIDS-VA can be
improved through adjusting the CPU and memory allocation. In this experiment group, we evaluate
the effectiveness and performance of our dynamic provision approach for adaptive CPU allocation.
To simulate a resource competition situation, a virtual server is running on the same physical
machine with the NIDS-VA and CPUburn is running in it to consume CPU as much as possible. As
shown in Figure 13, to simulate time-varying workloads, we change the packets sending speeds
every 10 s. Figure 14 shows the actual CPU allocation obtained from the fuzzy controller when
handling varying network traffic. Three TDR has been set for the fuzzy controller: 1%, 2%, and 3%
and we try to figure out the difference of CPU allocations for the three TDRs. First, as we can see
from Figure 14, all of them can achieve adaptive CPU allocation to keep up with the time-varying
workloads. For 3% TDR, its CPU allocation is smaller than the allocation for 1% and 2% TDRs
almost at any time, and it can save about 7% CPU on average compared with 1% TDR.

For 1% TDR, the latter part of the curve exhibits more jitters and declines slower compared with 2%
and 3% TDR. This is because there exists sudden burst of transient DR, which will have a more
significant impact for smaller TDR. For example, when encountering sudden burst like 8%, for 1%
Table II. Drop rate for networked intrusion detection system virtual appliance (NIDS-VA) and Snort under
different CPU allocations.

CPU allocation (%)

10 20 30 40 50 60 80 100Dropped by

NIDS-VA (%) 58.6 46.8 20.9 11.3 4.4 0.0 0.0 0.0
Snort (%) 5.5 5.0 7.1 4.1 3.9 3.2 1.7 1.5
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Figure 13. Time-varying workloads.

Figure 14. CPU allocation under different drop rate targets.
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TDR the deviation is 7%, while for 3% TDR, the deviation is 5%. Therefore, the controller will allocate
more CPU for 1% TDR than for 3% TDR.

Figure 15 shows the transient and accumulated DR for 2% TDR. We can see that the transient DR
fluctuates up or down at the TDR, while the accumulated DR tends to gradually converge at the TDR.
We can also see some transient spikes of DR. For example, at the 105th second the DR is almost 6%.
Most of the transient spikes are abnormal, which should be filtered out. A threshold for transient spikes
has been set up. Only when the current DR exceeds the threshold for two successive observation
points, it will be fed back to the fuzzy controller.

Figure 16 shows the variation of accumulated DRs. For 1%, 2%, and 3% TDRs, the accumulated
DRs almost converge at their own TDR, respectively. Combined with the results shown in
Figure 14, we can see that there is a balance between CPU allocation and the performance of NIDS-
VA, and our fuzzy controller can dynamically control the CPU provision for NIDS-VA to maintain
the DR at a given target value.

Experiment group 3. To evaluate the effectiveness of our approach in memory adjustment, we first set
the initial memory size of NIDS-VA to 128MB, and we observe that the used swap size reaches
69,428KB after Snort starts, which indicates that the memory resource is squeezed. We use
Tcpdump to generate network traffic at a speed of 200Mbit/s to stress the Snort and the TDR is set
to 0%—a very stringent requirement. Two methods can be used to adjust VM’s memory size in
Xen: ‘xm mem-set dom_id mem_size’ in dom0 and ‘echo –n “mem_size” > /proc/xen/balloon’ in
domU. The latter one has been chosen, because it can allocate memory at the granularity of KB. As
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Figure 16. Accumulated drop rate under different drop rate targets.

Figure 15. Transient and accumulated drop rate for 2% drop rate target.
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shown in Figure 17, Snort experiences a severe performance bottleneck at the beginning of the
experiment due to the extreme shortage of memory, and its DR even reaches 82.6%. Figure 18
shows that the fuzzy controller allocates about 40MB memory in three continuous time intervals
and greatly relieves Snort from the performance bottleneck. While at the sixth second, DR reaches
20%. This is because the newly allocated memory gets exhausted, and the performance of Snort
Figure 17. Transient drop rate of Snort.
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Figure 18. Memory adjustment for networked intrusion detection system virtual appliance.
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degrades again. The fuzzy controller continuously adjusts the memory allocation to fulfill the
performance of Snort based on the DR it observed, and after the 31st second, the DR maintains
around zero. In this experiment, memory allocation is increased at all the time. This is because in
Xen 3.2, the memory allocation of a VM cannot be decreased to a value less than 238,592KB. For
example, the current memory size is 512MB, and we try to adjust it to 128MB through ‘xm mem-
set’, but the actual memory size can only be shrunk to 238,592KB. It also means that once the
memory is allocated, it is hard to be reclaimed. To avoid resource over-provision, we modified the
fuzzy sets and rules to enable a much finer tuning when the DR is relatively low. The experimental
results show that memory allocation given by the controller is gradually approaching to an
appropriate value on the basis of the observed DR.

Experiment group 4. Hyperspector [18] is a virtual distributed monitoring framework for intrusion
detection. It also adopts a software port mirroring mechanism to enable the IDS-VA to capture all the
packets that the server VM sends and receives. However, Hyperspector is implemented on the basis of
a customized FreeBSD OS, and the implementations of VMM and software port mirroring mechanism
of Hyperspector are significantly different from CloudMon. It is nearly impossible to port them to our
Xen-based virtualization platform. Thus, we repeat the Snort DR experiment of [18] in CloudMon and
compare our results with the results of Hyperspector given in [18]. One-byte UDP packets are sent
from an external physical machine to the destination machine, which hosts the server VM and NIDS-
VA at various rates. We also measure the performance of Snort running in base system (domain 0) of
Xen. As shown in Figure 19, CloudMon begins to drop packets when the packet sending rate reaches
about 100,000 packets per second, while Hyperspector experienced packet drops at about 50,000
Figure 19. Packet drop rate of Snort.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe



Figure 20. Online host numbers comparison of three algorithms.

Figure 21. Average utilization of distributed networked intrusion detection system (NIDS).
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packets per second according to [18]. Generally speaking, CloudMon outperforms Hyperspector to some
extent, while CloudMon exhibits more overhead than Hyperspector when compared with base system. In
CloudMon, as the network load goes higher, the DR of the IDS-VA is higher than that in the base system
by 0.5% to 1.3%. While in Hyperspector, the performance of IDS-VA is much closer to the base system.
Through analysis, we found that CloudMon incurs higher overhead compared with the base system in two
operations: one is the Linux bridge packet duplication and forwarding; the other is the packet transmission
between Xen front-end and back-end drivers.

Experiment group 5. The purpose of this experiment group is to evaluate the effectiveness and the
efficiency of our cloud-oriented resource management approach. Before enabling our algorithms, our
cloud pool has been running a series of VMs. To better simulate the behaviors of a dynamic cloud
computing environment with VM arrival and departure, we submit new application VMs to the
cloud pool according to a Poisson distribution during the running of our online algorithm. To
evaluate the performance of our algorithm, we compared it with static first fit (SFF)¶ and static best
fit (SBF) in terms of the number of online physical hosts and the pool resource utilization.
Correspondingly, our online algorithm is named DBF. Figure 20 shows that our algorithm uses less
number of online physical hosts to run the application VMs than SFF and SBF algorithm. At the
245th minute, our algorithm only uses 28 physical hosts, saving 10 and 6 nodes compared with SFF
and SBF, respectively. The reason is that our algorithm exploits live migration to ensure VMs and
NIDS-VAs are concentrated at all the time, thus achieve the objective of resource efficiency.
Figure 21 shows the overhead incurred by distributed NIDS system. The resource utilization is an
¶Static means no migrations of VMs.
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average of two resource dimensions: CPU and memory. As shown in Figure 21, an average of 15%
overhead is incurred by the distributed NIDS system, which means the distributed NIDS system
additionally consumes about 1/6 resources compared with the overall resource consumption of
application VMs. During the experiments, we found that the network traffic of a VM may be
monitored twice, because the communication between two VMs hosted on different hosts may be
inspected by both the NIDS-VAs of the two hosts. It also means that if we carefully manage the
traffic being inspected and avoid duplicated monitoring, the overhead can still be reduced. The
overhead is below 20% in the worse case, which is acceptable in a cloud environment with high
security requirement.
7. RELATED WORK

Cloud computing has been recognized as the enabling technology of IoT. Some cloud systems and
services have been successfully designed and developed to serve as the underlying infrastructures
for storing and handling IoT data and applications. IoTCloud [3] is a cloud-compatible open source
messaging system and extendable API that enables developers to write scalable high performance
IoT and sensor-centric applications. Sensor-Cloud [4] uses SensorML, a sensor model language, to
describe sensor metadata and manages sensors via the cloud, rather than providing their data as a
service. SenaaS [5] proposes a sensor-as-a-service model and encapsulates both physical and virtual
sensors into services, which can provide an event-driven sensor virtualization approach for IoT
Cloud, Gubbi, etc. The study [2] presents a Cloud centric vision for worldwide implementation of
IoT, and implements a cloud-based IoT application using Aneka cloud service and Microsoft Azure.

One challenge, which may pose negative impact on the application of cloud technology in IoT, is
security. To monitor the security of cloud environments, virtual security appliance has been
proposed and shown great market potential in cloud security markets. A recent report [19] from IDC
pointed that ‘virtual security appliance deliver a strong left hook to traditional security appliances’
and ‘radically change the appliance market’. IDS and IPS being parts of traditional security
appliances are now virtualized as VAs and produced by many network security vendors.

7.1. Virtualized networked intrusion detection systems

Virtualization technology has long been used by security applications to enhance the security of
computer systems [18,20–22]. The basic idea is to use VM to isolate these security applications
from the protected systems and leverage VMM to monitor and protect them without having to trust
the OS. In academia, researchers have adopted VM technology to enhance the intrusion detection
systems. Livewire [20] leverages VM technology to isolate the IDS from the monitored host, while
it still can enable IDS-VM to monitor the internal state of the host through the VM introspection
technique. Joshi et al. used vulnerability-specific predicates to detect past and present intrusions
[21]. When vulnerability is discovered, predicates are determined and used as signatures to detect
future attacks. Hyperspector [18] is a virtual distributed monitoring environment used for intrusion
detection, which provides three inter-VM monitoring mechanisms to enable IDS-VM to monitor the
server VM. In most of the earlier systems, IDS-VM shares the physical resource with the host and
the other VMs on the same machine. Sharing will bring resource contention and impact the
performance of IDS but neither of them has considered the performance issues.

7.2. NIDS performance modeling and resource provision

Many research studies focus on the performance issues of NIDS. Several proposed NIDS systems have
been tested in respect of their performance [23, 24]. While these approaches are only used for
performance analysis and evaluation, neither of them considered the relationship between
performance and resource usage. Lee et al. [25, 26] proposes dynamic adaptation approaches, which
can change the NIDS’s configuration according to the current workloads. Dreger et al. [9] proposed a
NIDS resource model to capture the relationship between resource usage and network traffic. They
use this model to predict the resource demands of different configurations of NIDS. Both of them
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focus on NIDS configuration adaptation, while the implementation of adaption capability depends on
the implementation details of NIDS to some extent, the mechanism implemented in one NIDS may
not be fit for others. By contrast, our approach leverages a feedback fuzzy control mechanism to
dynamically provision resources to NIDS application to fulfill its performance requirements without
the need to give a model to estimate its resource usage. Xu et al. [27] presented a two-layered
approach to manage resource allocation to virtual containers sharing a server pool in a data center.
The local controller also uses fuzzy logic, while in that, paper fuzzy logic is used to learn the
behavior of the virtual container instead of online feedback control. Besides, the proposed method is
essentially concerned with server applications, not for NIDS. Different from the earlier systems, our
system leverages feedback fuzzy control mechanism to achieve adaptive resource provision for NIDS.
7.3. Resource management in distributed systems

Dynamic resource allocation and management in distributed systems have been studied extensively,
early research experiences [28–30] focus much on how to schedule independent or loosely coupled
tasks in a shared system. The objective is to balance the workload among servers, so as to maximize
system throughput. In [30], resource provisioning for large clusters hosting multiple services was
modeled as a bidding process. However, these existing techniques are not directly applicable for the
resource provision of VM. They lack of good isolation mechanisms; thus, it is hard to meet the QoS
requirements of applications in VMs. VM migration has been used to by [31] to handle overloaded
physical nodes. The black box strategy uses utilization statistics to infer which VMs need to be
migrated and uses application statistics to infer the resource requirements using a queuing theory.
However, it is very difficult to predict the resource requirements of complex applications requiring
multiple resources using queuing theory. PMapper [32] uses live migration technique to enable
resource scheduling and design migration strategies to guide the application placement for energy
saving purpose, while none of the earlier systems considered the resource provision problem for
network monitoring and the distributed NIDS deployment.
8. CONCLUSION AND FUTURE WORK

In this paper, we proposed CloudMon that is a dynamic resource provision and management system for
distributed NIDS-VAs deployment and monitoring in a cloud environment. We use fuzzy control
method to characterize the complex relationship between performance and resource demands to
overcome the absence of mathematical model for NIDS-VA. An online fuzzy controller has been
developed to adaptively control the resource allocation for NIDS under varying network traffic on
the basis of a set of linguistic rules. We identified the problem as MVVP and adopted an offline VM
placement strategy to improve resource efficiency. An event-driven online VM mapping algorithm is
proposed to deal with the dynamics of a cloud environment. We have implemented our approach in
the Xen-based iVIC platform and our experiment results show that it is a viable solution.

Our ongoing work is three-fold. First, we plan to take more practical evaluation through real
applications on our iVIC platform to further investigate the effectiveness and efficiency of
CloudMon. Second, we will extend CloudMon to support more virtualization platforms such as
Kernel virtual machine and VMware. Third and last, we will collect more real-life network traffic to
train our fuzzy controller and improve its precision.
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