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Abstract—Cloud computing brings a loose-coupled resources
integration paradigm with virtualized, elastic and cost-
efficient resource management capabilities. Virtualization-
based logging and replay technologies give users the ability 
to record the executions of the whole virtual machines and 
recover them at any time in a peer to peer mode, and it has 
become an important approach to analyze the system vul-
nerability, debug the system execution, or recover a failed 
system. In this paper, we design a logging and replay system 
named LoRe in KVM (Kernel-based Virtual Machine)
which is a widely-used full virtualization solution. In LoRe, 
the logging of non-deterministic events is achieved based on 
the Virtual Machine Control Structure (VMCS), and a ker-
nel notification chain is designed to reduce the time con-
sumption of the branches counter matching procedure in the 
replay process. Moreover, to use less cache and reduce the 
overhead of log transmission, a reusable circular buffer 
queue is designed and IOCTL is used for the data transmis-
sion. We implemented LoRe in kvm-kmod-2.6.32, and exper-
imental study show that the overhead of LoRe is lower than 
8%, and only a small storage space is used. 

Keywords-Cloud Computing; Virtualization; KVM; 
Logging and Replay; Non-deterministic Event

I. INTRODUCTION

In recent years, Cloud computing [1] has become a 
popular computing paradigm over the Internet with virtual-
ized, scalable and cost-efficient resource management 
approaches to integrate loose-coupled resources, and im-
prove their utility. Many famous corporations such as 
Amazon, Google, Microsoft and Salesforce become cloud 
platform providers. Meanwhile, the service security and 
continuity are two critical issues in a public cloud compu-
ting environment. Although the cloud platform takes rela-
tively advanced measures for the security and high-
availability of virtual machine, it cannot completely pre-
vent the users’ sensitive information theft, system intru-
sion, and state monitoring for uncontrollable virtual ma-
chines. Execution logging and replay is an advanced abil-
ity to reconstruct the past execution of a system in con-
junction with a checkpoint of the system state in a peer to 
peer mode [2]. It has been extensively used for system 
security analyses, fault tolerance, system diagnosis and 
debugging. For example, the replay of a process of privacy 
information theft can help administrator to analyze and 
solve the security intrusion or vulnerability, or granularly 
monitor and analyze the exceptions and errors occurred 
during the system’s running.

There are various approaches for classic hypervisors, 
such as SMP-Revirt [4] based on para-virtualization plat-
form Xen, Retracer [5] for VMware; ExecRecorder [6]
based on emulator Bochs. KVM [3] is a full virtualization 

solution for Linux on x86 hardware containing virtualiza-
tion extensions (Intel VT or AMD-V). Using KVM, one 
can run multiple virtual machines running unmodified 
Linux or Windows images. KVM is being used widely in 
virtualization infrastructures, but few solutions are provid-
ed in respect on executions logging and replay. The work 
[7] provides a logging and replay system for KVM, which 
is mostly close to ours, but it is incomplete or has several 
limitations based on following observations and analyses.

Based on the features of the hardware virtualization, a 
suitable transparent logging and replay mechanism should 
be designed firstly. The guest OS in a KVM virtual ma-
chine can’t realize the existence of a virtual environment. 
However, a main feature of the hardware virtualization is 
that the host and the guest share the same set of CPU reg-
isters, among which we need performance counter regis-
ters to log the time location of an event, how to distinguish 
the user who modifies the value of these registers is a key 
problem.

In addition, reducing the time consumption in the re-
play process is a way to significantly improve the overall 
performance of logging and replay system. During the 
replay process, the first task is to match the time location 
of the event to be replayed. The previous system based on 
Xen employed the single step mechanism to accomplish 
this goal which brought a high time consumption and per-
formance overhead. Therefore, the single step mechanism 
should be used as little as possible, and reducing the time 
consumption in replay process is an important approach to 
improve the overall performance of logging and replay 
system.

An effective data structure should be designed to re-
duce the use of kernel buffer. Data logged in logging pro-
cess is saved in kernel cache first and temporarily, and 
then these data will be read out and storage in the disk. 
Therefore, an effective data structure should be designed 
to use less kernel cache and release the burden of frequent 
data transmission. Meantime, the integrity of the data 
should be kept.

To comply with the KVM architecture, how to ensure 
the data transmission and storage efficiently is a factor 
should be considered on implementation. An inappropriate 
interface design of data transmission may cause system 
vulnerabilities. Therefore, the corresponding data structure 
should be designed and the existing tools of KVM should 
be integrated 

To address the problems mentioned above, we design 
and implement a KVM based system-level execution log-
ging and replay system – LoRe. The contributions of LoRe 
mainly are as follows:
�  A transparent hardware virtualization logging and 

replay mechanism is designed for KVM, and the 
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Virtual Machine Control Structure (VMCS) is em-
ployed for non-deterministic events recoding. 

� To improve the performance of LoRe, a kernel no-
tification chain is employed to reduce the time con-
sumption of the matching procedure in the replay 
process together with the branch counter matching 
mechanism for KVM. 

� To make use less cache and reduce the burden of 
performance, an efficient and reusable circular 
buffer queue is designed.

� To comply with the data transmission protocol of 
the KVM framework, IOCTL is also used to trans-
fer data for LoRe data. And we implemented LoRe 
in kvm-kmod-2.6.32.27 as an extended service of 
CyberGurader of iVIC [8][20], and experimental 
results show that it is useful. 

The remaining parts of this paper are organized as fol-
lows: in Section II, we analyze and compare current relat-
ed works: the design and implementation of the LoRe are 
introduced in Section III and Section IV; some experi-
ments were conducted and are presented in Section V. 
Finally, we draw some conclusions and discuss about the 
future work in the last Section.

II. RELATED WORK

The main virtualization based logging and replay sys-
tems include SMP-Revirt [4] based on para-virtualization 
platform Xen, Retracer [5] based on traditional full virtual-
ization platform VMware, ExecRecorder [6] based on 
emulator Bochs and the work [7] based on KVM .

ReVirt [9][10] is the first paper introduced the logging 
and replay technique to the virtualization area. It used the 
UMLinux as the virtualization platform and conducted a 
logging and replay system for uniprocessor computer sys-
tem. In 2008, the ReVirt team proposed a new, multi-core 
logging and replay system based on Xen. UMLinux and 
Xen are both para-virtualization platforms. The guest 
knows the existence of the virtual environment. Mean-
while, UMLinux and Xen carried out the system virtual-
ization by intercepting the system calls, and the perfor-
mance is worse than that of the KVM.

Retrace has a similar mechanism as the ReVirt. Re-
trace divided the logging process into two phases. Firstly, 
it recorded the minimum event sets and then expanded the 
sets to a complete log file with a low cost. Retrace is based 
on the VMware plat-form and the implementation details 
cannot be obtained.

ExecRecorder was a system-level failure recovery sys-
tem based on Bochs. It forked a new process called parent 
process when checkpointing, then the parent process wait-
ed for the signal of recovery and child process continued 
to run. Bochs is an X86 PC emulator, software emulation
used by Bochs makes it easier to log non-deterministic 
events because all instructions are known and handled by 
the VMM, but Bochs can’t keep good performance be-
cause of the software emulation. Though ExecRecorder 
has very low overhead (<4%), the platform limits its wide 
usage.

The work [7] proposed a logging and replay system 
based on KVM, it analyzed the features of KVM, logged 
and replayed non-deterministic events by QEMU and 
KVM and transferred data through DebugFS. It did not 
consider the question of how to design efficient data struc-

ture and DebugFS made other modules be aware of the 
logging and replay system which brought low data security. 

We design and implement a new logging and replay 
system - LoRe, which has better performance and security. 
LoRe has some natural implementation advantages over 
the other systems because of existing features of the KVM 
platform. Hardware virtualization makes logging and re-
play for KVM transparent to the guest and gives VM bet-
ter performance. Copy-on-Write disk image capabilities 
����������	�
������������������� �������
����� ��������
and replay. At the same time, hardware virtualization has 
some special problems which we discuss in detail in Sec-
tion III and IV.

III. DESIGN OF LORE
During the logging process, three kinds of non-

deterministic events should be logged: external interrupts, 
device input and special instructions like RDTSC, and the 
logged information includes type, time and data. LoRe 
uses the triple <BC, RIP, RCX> to identify the time loca-
tion when an event happens. BC (Branches Counter) is the 
value of branches retired since the launch of VCPU, RIP is 
the instruction pointer and RCX keeps the value of itera-
tions remaining in case of string instructions. Figure 1
shows the architecture of LoRe.

Because the KVM module locates in the low level of 
the OS, so the event logger which is in the KVM module 
can get the value of registers easily, which makes it perfect 
to get the information of a non-deterministic event. And 
for the reason that the kernel cache is limited and tempo-
rary, the logged data should be read out and saved in the 
disk as soon as possible. Oppositely, the replay process
sends the data into the kernel cache, and stops the guest at 
the right time location and injects the event into the guest 
for replay.

Fig. 1. Architecture of LoRe logging and replay system

A. Data Error and Inconsistency
A running state named checkpoint is necessary for log-

ging and replay. Because of the re-execution in the replay 
process, devices like disk and memory will be written and 
read again, which may result in data error and inconsisten-
cy in the case of shared disks. 

A…

Log Peer

read A
Log

B…

Read
&A

write B

B…

Replay Peer

Log: read A

inconsistency

a) Data inconsistency
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Log: +1
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b) Data error 

Fig. 2. Data inconsistency and error cases

Data inconsistency happens in such a case: we read 
data A at address &A of the disk, and then the address &A 
is logged. After logging, we write data B to the same ad-
dress, so we get B not A when replaying this reading event.

Data error happens in this case: during the logging 
process, we plus 1 to the data A at address &A, then we 
will do the pulsing again by replaying, which actually plus 
2 not 1 to the data at address &A.

Two disks and write redirection are the common meth-
ods to solve this problem, but the former one wastes store 
space and the latter one is very complex. In LoRe, we take 
advantage of the Copy-on-Write format of virtual disks, 
	����� ������ ��� ������������ ��� ����� ��� ��
������ �����
instead of synchronizing the write back to the disk by us-
ing the snapshot flag. We save the operating system state 
by the function SaveVM of KVM, which tags the disk 
with the snapshot flag and ensures the disk unmodified 
during the logging process. The advantages of our method 
are no waste of store space and few modifications to the 
KVM system.

B. Time Location based on VMCS
One main feature of KVM is that the guest runs direct-

ly on the physical hardware, sharing the same registers 
with the host. In order to distinguish the different running 
environments, KVM provides the VMCS(Virtual Machine 
Control Structure) [11] to save and restore the running 
environment during the transition between the guest and 
the host, as is shown in Figure 3.In the process of record-
ing the time location, the value of RIP and RCX can be 
obtained easily by VMCS, while the value of BC is diffi-
cult to get because of the sharing of registers between the 
guest and the host. At the same time, a virtual machine of 
KVM is just a common process in the host operating sys-
tem, so the guest does not know the exact time point when 
it starts to run and setting the registers manually will make 
the courting larger than the right value. To solve this prob-
lem, we design a counting mechanism based on VMCS, 
which is shown in Figure 4. 

We setup the registers in VMCS to enable the guest’s 
counter[11] when the host is running. Because the guest 
running environment is invalid, the counter will not run 
until the guest starts running. The value of performance 
counter register is accumulated every time when the guest 
gives the control of CPU registers to the host.

C. Mechanism of Branches Counter Matching 
In order to prevent the number of branches counter 

more than the correct value, the previous system based on 
Xen triggers the overflow interrupt (PMI) at a distance of 
N (N�128) before the right branch, then the guest single-
step runs to match the right value every branch in Figure 5,
which brings high performance loss and time consumption.

Fig. 3. Save and restore the running environment during the transition
between the guest and the hostg

Fig. 3. The BC counting mechanism based on VMCS

a) Xen-based system) y

b) LoRe
Fig. 4. Branches Counter matching in Xen-based systems and LoRe
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There exist two parts of time overhead in the mecha-
nism above: the interrupt handler and the single-step pro-
cedure. LoRe employs the notification chain to make the 
overflow interrupt not happen until the right branch. Com-
pared to common uses, LoRe does not need to do real 
interrupt handling after catching the overflow because our 
purpose is detecting the overflow not really handling it. It 
takes less time to match BC no single step, at the same 
time, no interrupt handler not only saves time but also 
simplifies the implementation. The mechanism above 
shortens the time to match BC and improves the perfor-
mance of replay, as is shown in Figure 5(b).

D. Design of Kernel Cache Model
Most of the logging work is implemented in KVM 

module, but the kernel cache is limited and temporary, so 
logged data should be read out and written to the disk. We 
design a reusable cache model based on producer-
consumer model, in which QEMU is the consumer and the 
KVM is the producer. The circular buffer queue model is 
shown in Figure 6. 

a) Normal   

b) Empty

c) Full

Fig. 5. The circular buffer queue model 

Our queue has three control data: the write pointer, the 
read pointer and the available space, which are the same as 
common queues. The write pointer is used by KVM who 
puts data into the pool, the read pointer is changed by 
QEMU who gets the data out and the available space indi-
cates the status of the pool.

Common queues have three states: normal, empty and 
full, but LoRe only allows the first two states, because the 
producer can’t stop at any time. In the normal state, there 
exist both unprocessed data and available space, the pro-
ducer and the consumer both work properly; In the empty 

state, all data has been read out, the consumer stops its 
work and waits; In the full state, there is no available space 
but the producer KVM continues putting data into the pool, 
so new data will overwrite the old ones , resulting in de-
stroying the integrity of the logged data. To avoid the full 
state of the pool and reduce the pressure of the kernel 
cache, we let QEMU make data requests to the pool in 
every main loop of the vCPU, and LoRe transfer all the 
unprocessed data to QEMU at once. 

E. IOCTL based data transmission mechanism
IOCTL is a way that QEMU communicates with KVM

in kernel, so we combine IOCTL with the memory copy 
function to transfer data in LoRe. The main procedures are:
In every main loop of the vCPU, QEMU asks whether 
there are unprocessed data in the pool through IOCTL; if 
there exist such data, KVM copies all unprocessed data to 
the memory address in the user space by the memory copy 
function and modifies the read pointer. The main ad-
vantage of the data transmission mechanism in LoRe is 
that all the process is handled in the KVM architecture, so 
other modules can’t access the data information. By this 
way, the data can be conveniently transferred, which 
makes LoRe easier to be complied with the existing sys-
tem. 

IV. IMPLEMENTATION

According to the design principles above, we imple-
mented LoRe in kvm-kmod-2.6.32.27 while the host op-
erating system is Debian Squeeze. We make modifica-
tions to both QEMU and KVM, including some new con-
sole commands to control our logging and replay system 
and new IOCTLs related to data transmission. In KVM 
module, we insert our logging and replay module into 
some important functions like the interrupt handling func-
tion and the I/O handling function. The following sections 
show the details of our implementation.

A. Logging Non-deterministic Events
Taking the advantage of the low level of KVM, LoRe 

gets the information of non-deterministic events in the
kernel module. The control flow of the logging run is 
shown in Figure 7. 

Fig. 6. Control flow of the logging process

When non-deterministic events happen, the guest will 
exit to root mode (VM-Exit). At this time, KVM sends the 
event to the event logger for information logging, and 
then handles this exit as normal and tells the guest to run 
again.
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There are two kinds of events in logging process: in-
terrupts and I/O events. Logging interrupts are relatively 
easy, because we just need to record the interrupt number 
and time location in the interrupt handling function. There 
exists two kinds of I/O: Programming I/O (PIO) and 
Memory-mapped I/O (MMIO). PIO data is one-byte.
KVM interceptes the guest call to IOREAD, and emulates
the instruction and stores the data in RAX register where 
we log. MMIO is also intercepted by KVM, and then 
KVM copies the data from the device memory to the 
guest memory space where we can get the data.

B. Performance Counters and Related Registers.
Throughout logging and replay, the performance coun

ter provides a coarse, relative time at which events occur. 
Performance counter has a group of MSRs named IA32_
PMC[0-3], all of them are controlled by the MSRs IA3
2_PERFEVTSEL[0-3]. During the logging process, we
only use the IA32_PMCx and IA32_PERFEVTSELx r

egisters. In the replay process, the most important work is 
matching the time location, during which we use overflow
interrupt to detect the BC match.

 In this process, IA32_PERF_GLOBAL_STATUS, I
A32_PERF_GLOBAL_OVF_CTRL and IA32_DEBUGC
TL are used. IA32_PERF_GLOBAL _STATUS helps us
to detect whether the performance counter is overflowed, 
IA32_PERF_GLOBAL_OVF_ CTRL is used to clear the
corresponding bit of the status register and FREEZE_PE
RFMON_ON_PMI of the IA32_DEBUGCTL register can f
reeze the value of performance counter right after the PMI
happens, preventing the interrupt handling process distur

bs the value of the counter.
All registers mentioned above should be set up in the 

VM-Entry and VM-Exit fields of VMCS, and then the 
VMCS will save and restore the values of the registers 
automatically during the transition between the guest and 
the host.

C. Mechanism of Time Location Matching
In order to inject the event into the guest deterministi-

cally, we need to stop the guest at the right time location 
and return the control to KVM module.

We design an algorithm to match the time location, so 
some assumptions should be made first: A is the current 
event, B is the next event, so B.BC is the value of branch-
es retired of B, B.RIP and B.RCX present the values of 
RIP and RCX registers.

First, we get the distance from A to B, �AB=BCA-BCB.
Because the executions are completely the same during 
the logging process and the replay process, after execut-
ing �AB branches, the execution should arrive at event B,
and then we use hardware breakpoint to match RIP value 
and RCX match is achieved by single step.

BC Matching. We can’t know exactly the value of 
performance counter on the side of host when the guest 
operating system is running, so we use overflow mecha-
����� �� ����� ��� ������� ���� ��� ����������� ������� ��
LAPIC interrupt for performance counter overflow (NMI). 
The performance counter is 40-unsigned integer, and its 
maximum value max-pmc can be described as 40 bits of 1. 
When the max-pmc is increased by 1, the performance 
counter will overflow. As such, if we set performance 

counter as max-pmc-�AB +1, the overflow will happen 
after �AB branches. Because of the features of KVM, this 
NMI will lead to a crash of the host operating system, in
order to prevent this happening and we don’t need a real 
interrupt handler but just a detector of the overflow at the 
same time, notification chain is the best choice.

Notification chain. It provides a way to get warnings 
when some events we are interested in happen, which is 
different from hard coding. The notification chain has 
registered some important notifiers in kernel, including 
die notification chain, network device notification chain
and so on. 

Die notification Chain. We use the die notification 
chain in this paper to detect the overflow of performance 
counter. When a kernel panic happens, devices can get the 
information and handle it, we can change our device sta-
tus or shut it down instead of shutting down the operating 
system. In order to use the chain, we need to register an 
event handler, which parses the information about the 
running state, does processing and tells the next operation 
needed. Figure 8 shows the procedure.

RIP matching. The mechanism used to match EIP is 
hardware breakpoint. The P6 architecture supports four 
hardware-assisted breakpoints for debugging purposes 
which can be set up to trigger on reads or writes from any 
address. The guest’s use of these breakpoints is not al-
lowed during logging and replay process. Hardware 
breakpoint in our system only involves several registers: 
Dr0 ~ Dr3 and Dr7. After the matching of BC, we set 
the linear address of RIP to one of the debug address 
registers DRx and configure necessary bits in register DR7.
After the configuration, he guest is allowed to run normal-
ly until the debug exception is trapped. Before modifying 
the value of DRx, we need to save the original value and 
restore it after the match of EIP to ensure the normal run 
of the guest.

RCX Matching. If the value of the RCX register is not 
already the value of RCX in the triple, it must be set as 
RCX =RCX –RCXn (RCXn means the value of RCX in the 
triple) and the guest should be set to run in single step
mode, then the guest continues to run until the right num-
ber of iterations is executed. At this point, time location 
match is over and event injection can be done. After the 
injection, the value of register RCX should be restored 
with RCX in the triple, in this way, the remaining repeat 
iterations will continue when the guest resumes.

Fig. 7. The procedure of die notification chain
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D. Replaying Non-deterministic Events
The event injection is done when the appropriate time 

location reaches, its main flow is as follows: data in the 
log file are sent into the kernel and the guest is monitored. 
When the time location reaches, KVM injects the event 
according to the event type. Timer interrupts can be re-
played in the kernel, but the I/O events should be replayed 
with the help of QEMU. The control flow of replay is 
shown in Figure 9. 

First of all, replay command is sent via console of 
QEMU and a checkpoint is restored, then KVM module 
masks all interrupts. Second, Notification chain is enabled 
in CPU. Then the time location match begins, and events 
are replayed at the right time. For timer interrupt, we need 
to write its interrupt number into 
VM_ENTRY_INTR_INFO_FIELD, while for I/O events, 
KVM return control to QEMU, where the event is re-
played.

Fig. 8. Control flow of the replay process

V. EVALUATION

A. Configuration of the Experiment Platform
The experiment computer is a 2.8 GHz Intel i7 proces-

sor with 4 GB of memory, which runs a uniprocessor 
guest virtual machine with 128 MB of memory. Both the 
host computer and the guest OS are install a version of
Debian Squeeze with Linux 2.6.32 kernel. 

B. Overhead Evaluation of Logging  
In KVM, VM-Exit will bring in performance loss, 

but LoRe makes RDTSC trapped for deterministic replay, 
so we need to measure how much the performance loss is.

Logging Overhead of RDTSC. We run a program 
which invokes RDTSC for 100000 times iteratively, and 
then record the time cycles and real time in every cycle. 
The result is shown in Table 1. We can observe that emu-
lating the execution of RDTSC has a high performance 
loss but logging overhead is relatively low, which is only 
���!�������"���#���$�

Table 1. logging Overhead of RDTSC
Type Time cycles Time'!�*

no trap 93 0.033
trap without log 9586 3.424

trap with log 10082 3.601

Logging Interrupts Evaluation. Logging interrupts 
is similar to RDTSC, we logged 5000 time interrupts and 
recorded the time overhead of logging. The result is 
shown in Figure 10. From the figure, we can conclude 
that logging interrupts takes about 318 time cycles
(114!�), which is similar to the RDTSC experiment.

Fig. 9. Overhead of logging interrupts
Logging Performance Evaluation. We use wget,

kernel compile [13] and LU in SPLASH-2 [14]
to show the comprehensive performance of logging. As 
the results shown in Figure 11, the performance loss is 
acceptable. 

Fig. 10. Normalized execution time

Performance Comparison. To compare the overhead 
of logging of LoRe with current works, we have done 
some experiments based on kernel compile to show the 
performance of LoRe, ReVirt and EcecRecorder. Figure 
12 is the results and the results show that the performance 
loss of LoRe is relatively lower than others.

Fig. 11. Horizontal comparison of logging performance

C. Log Growth Evaluation
The size of log file increases with logging time. Every 

log entry is about 40 bytes uncompressed, and we record 
the size of log file after gzip compression in idle, iSCP 
and kernel compile cases. The result is as follows:

The log growth has relationship with the kind of 
workload. In idle state, the log growth is the slowest, 
246.8KB/m; in kernel compile, the log growth is faster, 
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611.4KB/m; in iSCP, the log growth is the fastest, 
6.61MB/m, 9.3G/day, the log growth is acceptable con-
sidering the high capacity of current storage.

Table 2. Data size in three benchmarks
Benchmark/ Time 0 1 2 3 4 5

Idle (KB) 0.02 3.76 7.41 12.17 16.31 20.59
iSCP (KB) 0.02 113.3 225.9 338.5 450.6 564.3

kernel compile (KB) 0.02 10.05 19.87 30.15 41.53 50.97

 

Fig. 12. Data growth of LoRe

D. Overhead of Replay
The overhead of replay depends on two factors: (1).

At least two more VM-Exit to match time location. (2).
No need for idle time which reduce the time overhead.

This experiment repeats those benchmarks mentioned 
in Section 5.2 and compares the result with normal and 
logging cases. The result is shown in Figure 14. 

Fig. 13. Normalized execution time

According to the figure above, the performance of re-
play is better than that of logging when transferring files,
about 7.2% performance loss; in the kernel compile 
benchmark, the performance of replay is worse than that 
of logging, about 3.9% performance loss; in the LU 
benchmark, the performance of replay is almost equal to 
that of logging, about 1.01% performance loss.

To compare the replay performance loss of LoRe with
ReVirt and CASMotion [19], we recorded the replay time 
of kernel compile experiment and normalized the time by 
the logging time. Figure 15 shows the results. From the 
figure, the replay performance loss of LoRe is smaller 
than the others’, showing that the notification chain
mechanism improves the replay performance.

Fig. 14. Horizontal comparison of replay performance

Overall, logging and replay system based on KVM has 
low performance overhead and acceptable storage space.

VI. CONCLUSION

This paper analyzes the problems of service security 
and continuity in cloud computing platform, and compares 
implementation, performance loss and integrity of differ-
ent logging and replay systems based on different virtual-
ization platforms, then presents a new system level logging 
and replay system based on KVM: LoRe. Aiming at func-
tional, performance, security and data size requests, LoRe 
carries out a Virtual Machine Control Structure (VMCS) 
based logging and replay mechanism for non-deterministic 
events. Meanwhile, it employs the notification chain of 
Linux kernel to improve the performance of replay process, 
it also designs an input/output control (IOCTL) based 
secured data transmission mechanism and an efficient and 
reusable circular buffer queue model. Experimental results 
show that LoRe achieves a lower performance loss and 
requires a smaller storage space.

Our future work focuses on how to replay multi-core 
virtual machines and how to introduce logging and replay 
technique into live migration and high availability of vir-
tual machines, which will provide wider application fields 
for logging and replay technique.
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