
LoRe: Supporting Non-deterministic Events Logging and Replay
for KVM Virtual Machines

Jianxin Li12, Shouyu Si2, Bo Li12, Lei Cui2, Jingsheng Zheng2

1State Key Laboratory of Software Development Environment,
Beihang University, Beijing 100191, China

{lijx, libo}@buaa.edu.cn

2School of Computer Science and Engineering,
Beihang University, Beijing, 100191, China

{sishouyu, cuilei, zhengjs}@act.buaa.edu.cn

Abstract—Cloud computing brings a loose-coupled resources
integration paradigm with virtualized, elastic and cost-
efficient resource management capabilities. Virtualization-
based logging and replay technologies give users the ability
to record the executions of the whole virtual machines and
recover them at any time in a peer to peer mode, and it has
become an important approach to analyze the system vul-
nerability, debug the system execution, or recover a failed
system. In this paper, we design a logging and replay system
named LoRe in KVM (Kernel-based Virtual Machine)
which is a widely-used full virtualization solution. In LoRe,
the logging of non-deterministic events is achieved based on
the Virtual Machine Control Structure (VMCS), and a ker-
nel notification chain is designed to reduce the time con-
sumption of the branches counter matching procedure in the
replay process. Moreover, to use less cache and reduce the
overhead of log transmission, a reusable circular buffer
queue is designed and IOCTL is used for the data transmis-
sion. We implemented LoRe in kvm-kmod-2.6.32, and exper-
imental study show that the overhead of LoRe is lower than
8%, and only a small storage space is used.

Keywords-Cloud Computing; Virtualization; KVM;
Logging and Replay; Non-deterministic Event

I. INTRODUCTION

In recent years, Cloud computing [1] has become a
popular computing paradigm over the Internet with virtual-
ized, scalable and cost-efficient resource management
approaches to integrate loose-coupled resources, and im-
prove their utility. Many famous corporations such as
Amazon, Google, Microsoft and Salesforce become cloud
platform providers. Meanwhile, the service security and
continuity are two critical issues in a public cloud compu-
ting environment. Although the cloud platform takes rela-
tively advanced measures for the security and high-
availability of virtual machine, it cannot completely pre-
vent the users’ sensitive information theft, system intru-
sion, and state monitoring for uncontrollable virtual ma-
chines. Execution logging and replay is an advanced abil-
ity to reconstruct the past execution of a system in con-
junction with a checkpoint of the system state in a peer to
peer mode [2]. It has been extensively used for system
security analyses, fault tolerance, system diagnosis and
debugging. For example, the replay of a process of privacy
information theft can help administrator to analyze and
solve the security intrusion or vulnerability, or granularly
monitor and analyze the exceptions and errors occurred
during the system’s running.

There are various approaches for classic hypervisors,
such as SMP-Revirt [4] based on para-virtualization plat-
form Xen, Retracer [5] for VMware; ExecRecorder [6]
based on emulator Bochs. KVM [3] is a full virtualization

solution for Linux on x86 hardware containing virtualiza-
tion extensions (Intel VT or AMD-V). Using KVM, one
can run multiple virtual machines running unmodified
Linux or Windows images. KVM is being used widely in
virtualization infrastructures, but few solutions are provid-
ed in respect on executions logging and replay. The work
[7] provides a logging and replay system for KVM, which
is mostly close to ours, but it is incomplete or has several
limitations based on following observations and analyses.

Based on the features of the hardware virtualization, a
suitable transparent logging and replay mechanism should
be designed firstly. The guest OS in a KVM virtual ma-
chine can’t realize the existence of a virtual environment.
However, a main feature of the hardware virtualization is
that the host and the guest share the same set of CPU reg-
isters, among which we need performance counter regis-
ters to log the time location of an event, how to distinguish
the user who modifies the value of these registers is a key
problem.

In addition, reducing the time consumption in the re-
play process is a way to significantly improve the overall
performance of logging and replay system. During the
replay process, the first task is to match the time location
of the event to be replayed. The previous system based on
Xen employed the single step mechanism to accomplish
this goal which brought a high time consumption and per-
formance overhead. Therefore, the single step mechanism
should be used as little as possible, and reducing the time
consumption in replay process is an important approach to
improve the overall performance of logging and replay
system.

An effective data structure should be designed to re-
duce the use of kernel buffer. Data logged in logging pro-
cess is saved in kernel cache first and temporarily, and
then these data will be read out and storage in the disk.
Therefore, an effective data structure should be designed
to use less kernel cache and release the burden of frequent
data transmission. Meantime, the integrity of the data
should be kept.

To comply with the KVM architecture, how to ensure
the data transmission and storage efficiently is a factor
should be considered on implementation. An inappropriate
interface design of data transmission may cause system
vulnerabilities. Therefore, the corresponding data structure
should be designed and the existing tools of KVM should
be integrated

To address the problems mentioned above, we design
and implement a KVM based system-level execution log-
ging and replay system – LoRe. The contributions of LoRe
mainly are as follows:
� A transparent hardware virtualization logging and

replay mechanism is designed for KVM, and the

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $26.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.70

442

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.70

442

2013 IEEE International Conference on High Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing

978-0-7695-5088-6/13 $31.00 © 2013 IEEE

DOI 10.1109/HPCC.and.EUC.2013.70

442

Virtual Machine Control Structure (VMCS) is em-
ployed for non-deterministic events recoding.

� To improve the performance of LoRe, a kernel no-
tification chain is employed to reduce the time con-
sumption of the matching procedure in the replay
process together with the branch counter matching
mechanism for KVM.

� To make use less cache and reduce the burden of
performance, an efficient and reusable circular
buffer queue is designed.

� To comply with the data transmission protocol of
the KVM framework, IOCTL is also used to trans-
fer data for LoRe data. And we implemented LoRe
in kvm-kmod-2.6.32.27 as an extended service of
CyberGurader of iVIC [8][20], and experimental
results show that it is useful.

The remaining parts of this paper are organized as fol-
lows: in Section II, we analyze and compare current relat-
ed works: the design and implementation of the LoRe are
introduced in Section III and Section IV; some experi-
ments were conducted and are presented in Section V.
Finally, we draw some conclusions and discuss about the
future work in the last Section.

II. RELATED WORK

The main virtualization based logging and replay sys-
tems include SMP-Revirt [4] based on para-virtualization
platform Xen, Retracer [5] based on traditional full virtual-
ization platform VMware, ExecRecorder [6] based on
emulator Bochs and the work [7] based on KVM .

ReVirt [9][10] is the first paper introduced the logging
and replay technique to the virtualization area. It used the
UMLinux as the virtualization platform and conducted a
logging and replay system for uniprocessor computer sys-
tem. In 2008, the ReVirt team proposed a new, multi-core
logging and replay system based on Xen. UMLinux and
Xen are both para-virtualization platforms. The guest
knows the existence of the virtual environment. Mean-
while, UMLinux and Xen carried out the system virtual-
ization by intercepting the system calls, and the perfor-
mance is worse than that of the KVM.

Retrace has a similar mechanism as the ReVirt. Re-
trace divided the logging process into two phases. Firstly,
it recorded the minimum event sets and then expanded the
sets to a complete log file with a low cost. Retrace is based
on the VMware plat-form and the implementation details
cannot be obtained.

ExecRecorder was a system-level failure recovery sys-
tem based on Bochs. It forked a new process called parent
process when checkpointing, then the parent process wait-
ed for the signal of recovery and child process continued
to run. Bochs is an X86 PC emulator, software emulation
used by Bochs makes it easier to log non-deterministic
events because all instructions are known and handled by
the VMM, but Bochs can’t keep good performance be-
cause of the software emulation. Though ExecRecorder
has very low overhead (<4%), the platform limits its wide
usage.

The work [7] proposed a logging and replay system
based on KVM, it analyzed the features of KVM, logged
and replayed non-deterministic events by QEMU and
KVM and transferred data through DebugFS. It did not
consider the question of how to design efficient data struc-

ture and DebugFS made other modules be aware of the
logging and replay system which brought low data security.

We design and implement a new logging and replay
system - LoRe, which has better performance and security.
LoRe has some natural implementation advantages over
the other systems because of existing features of the KVM
platform. Hardware virtualization makes logging and re-
play for KVM transparent to the guest and gives VM bet-
ter performance. Copy-on-Write disk image capabilities
����������	�
������������������� �������
����� ��������
and replay. At the same time, hardware virtualization has
some special problems which we discuss in detail in Sec-
tion III and IV.

III. DESIGN OF LORE
During the logging process, three kinds of non-

deterministic events should be logged: external interrupts,
device input and special instructions like RDTSC, and the
logged information includes type, time and data. LoRe
uses the triple <BC, RIP, RCX> to identify the time loca-
tion when an event happens. BC (Branches Counter) is the
value of branches retired since the launch of VCPU, RIP is
the instruction pointer and RCX keeps the value of itera-
tions remaining in case of string instructions. Figure 1
shows the architecture of LoRe.

Because the KVM module locates in the low level of
the OS, so the event logger which is in the KVM module
can get the value of registers easily, which makes it perfect
to get the information of a non-deterministic event. And
for the reason that the kernel cache is limited and tempo-
rary, the logged data should be read out and saved in the
disk as soon as possible. Oppositely, the replay process
sends the data into the kernel cache, and stops the guest at
the right time location and injects the event into the guest
for replay.

Fig. 1. Architecture of LoRe logging and replay system

A. Data Error and Inconsistency
A running state named checkpoint is necessary for log-

ging and replay. Because of the re-execution in the replay
process, devices like disk and memory will be written and
read again, which may result in data error and inconsisten-
cy in the case of shared disks.

A…

Log Peer

read A
Log

B…

Read
&A

write B

B…

Replay Peer

Log: read A

inconsistency

a) Data inconsistency

443443443

A+1…

Log Peer

write +1
Log Write

A+1 A+2…

Replay Peer

Log: +1

inconsistency

b) Data error

Fig. 2. Data inconsistency and error cases

Data inconsistency happens in such a case: we read
data A at address &A of the disk, and then the address &A
is logged. After logging, we write data B to the same ad-
dress, so we get B not A when replaying this reading event.

Data error happens in this case: during the logging
process, we plus 1 to the data A at address &A, then we
will do the pulsing again by replaying, which actually plus
2 not 1 to the data at address &A.

Two disks and write redirection are the common meth-
ods to solve this problem, but the former one wastes store
space and the latter one is very complex. In LoRe, we take
advantage of the Copy-on-Write format of virtual disks,
	����� ������ ��� ������������ ��� ����� ��� ��
������ �����
instead of synchronizing the write back to the disk by us-
ing the snapshot flag. We save the operating system state
by the function SaveVM of KVM, which tags the disk
with the snapshot flag and ensures the disk unmodified
during the logging process. The advantages of our method
are no waste of store space and few modifications to the
KVM system.

B. Time Location based on VMCS
One main feature of KVM is that the guest runs direct-

ly on the physical hardware, sharing the same registers
with the host. In order to distinguish the different running
environments, KVM provides the VMCS(Virtual Machine
Control Structure) [11] to save and restore the running
environment during the transition between the guest and
the host, as is shown in Figure 3.In the process of record-
ing the time location, the value of RIP and RCX can be
obtained easily by VMCS, while the value of BC is diffi-
cult to get because of the sharing of registers between the
guest and the host. At the same time, a virtual machine of
KVM is just a common process in the host operating sys-
tem, so the guest does not know the exact time point when
it starts to run and setting the registers manually will make
the courting larger than the right value. To solve this prob-
lem, we design a counting mechanism based on VMCS,
which is shown in Figure 4.

We setup the registers in VMCS to enable the guest’s
counter[11] when the host is running. Because the guest
running environment is invalid, the counter will not run
until the guest starts running. The value of performance
counter register is accumulated every time when the guest
gives the control of CPU registers to the host.

C. Mechanism of Branches Counter Matching
In order to prevent the number of branches counter

more than the correct value, the previous system based on
Xen triggers the overflow interrupt (PMI) at a distance of
N (N�128) before the right branch, then the guest single-
step runs to match the right value every branch in Figure 5,
which brings high performance loss and time consumption.

Fig. 3. Save and restore the running environment during the transition
between the guest and the hostg

Fig. 3. The BC counting mechanism based on VMCS

a) Xen-based system) y

b) LoRe
Fig. 4. Branches Counter matching in Xen-based systems and LoRe

444444444

There exist two parts of time overhead in the mecha-
nism above: the interrupt handler and the single-step pro-
cedure. LoRe employs the notification chain to make the
overflow interrupt not happen until the right branch. Com-
pared to common uses, LoRe does not need to do real
interrupt handling after catching the overflow because our
purpose is detecting the overflow not really handling it. It
takes less time to match BC no single step, at the same
time, no interrupt handler not only saves time but also
simplifies the implementation. The mechanism above
shortens the time to match BC and improves the perfor-
mance of replay, as is shown in Figure 5(b).

D. Design of Kernel Cache Model
Most of the logging work is implemented in KVM

module, but the kernel cache is limited and temporary, so
logged data should be read out and written to the disk. We
design a reusable cache model based on producer-
consumer model, in which QEMU is the consumer and the
KVM is the producer. The circular buffer queue model is
shown in Figure 6.

a) Normal

b) Empty

c) Full

Fig. 5. The circular buffer queue model

Our queue has three control data: the write pointer, the
read pointer and the available space, which are the same as
common queues. The write pointer is used by KVM who
puts data into the pool, the read pointer is changed by
QEMU who gets the data out and the available space indi-
cates the status of the pool.

Common queues have three states: normal, empty and
full, but LoRe only allows the first two states, because the
producer can’t stop at any time. In the normal state, there
exist both unprocessed data and available space, the pro-
ducer and the consumer both work properly; In the empty

state, all data has been read out, the consumer stops its
work and waits; In the full state, there is no available space
but the producer KVM continues putting data into the pool,
so new data will overwrite the old ones , resulting in de-
stroying the integrity of the logged data. To avoid the full
state of the pool and reduce the pressure of the kernel
cache, we let QEMU make data requests to the pool in
every main loop of the vCPU, and LoRe transfer all the
unprocessed data to QEMU at once.

E. IOCTL based data transmission mechanism
IOCTL is a way that QEMU communicates with KVM

in kernel, so we combine IOCTL with the memory copy
function to transfer data in LoRe. The main procedures are:
In every main loop of the vCPU, QEMU asks whether
there are unprocessed data in the pool through IOCTL; if
there exist such data, KVM copies all unprocessed data to
the memory address in the user space by the memory copy
function and modifies the read pointer. The main ad-
vantage of the data transmission mechanism in LoRe is
that all the process is handled in the KVM architecture, so
other modules can’t access the data information. By this
way, the data can be conveniently transferred, which
makes LoRe easier to be complied with the existing sys-
tem.

IV. IMPLEMENTATION

According to the design principles above, we imple-
mented LoRe in kvm-kmod-2.6.32.27 while the host op-
erating system is Debian Squeeze. We make modifica-
tions to both QEMU and KVM, including some new con-
sole commands to control our logging and replay system
and new IOCTLs related to data transmission. In KVM
module, we insert our logging and replay module into
some important functions like the interrupt handling func-
tion and the I/O handling function. The following sections
show the details of our implementation.

A. Logging Non-deterministic Events
Taking the advantage of the low level of KVM, LoRe

gets the information of non-deterministic events in the
kernel module. The control flow of the logging run is
shown in Figure 7.

Fig. 6. Control flow of the logging process

When non-deterministic events happen, the guest will
exit to root mode (VM-Exit). At this time, KVM sends the
event to the event logger for information logging, and
then handles this exit as normal and tells the guest to run
again.

445445445

There are two kinds of events in logging process: in-
terrupts and I/O events. Logging interrupts are relatively
easy, because we just need to record the interrupt number
and time location in the interrupt handling function. There
exists two kinds of I/O: Programming I/O (PIO) and
Memory-mapped I/O (MMIO). PIO data is one-byte.
KVM interceptes the guest call to IOREAD, and emulates
the instruction and stores the data in RAX register where
we log. MMIO is also intercepted by KVM, and then
KVM copies the data from the device memory to the
guest memory space where we can get the data.

B. Performance Counters and Related Registers.
Throughout logging and replay, the performance coun

ter provides a coarse, relative time at which events occur.
Performance counter has a group of MSRs named IA32_
PMC[0-3], all of them are controlled by the MSRs IA3
2_PERFEVTSEL[0-3]. During the logging process, we
only use the IA32_PMCx and IA32_PERFEVTSELx r

egisters. In the replay process, the most important work is
matching the time location, during which we use overflow
interrupt to detect the BC match.

 In this process, IA32_PERF_GLOBAL_STATUS, I
A32_PERF_GLOBAL_OVF_CTRL and IA32_DEBUGC
TL are used. IA32_PERF_GLOBAL _STATUS helps us
to detect whether the performance counter is overflowed,
IA32_PERF_GLOBAL_OVF_ CTRL is used to clear the
corresponding bit of the status register and FREEZE_PE
RFMON_ON_PMI of the IA32_DEBUGCTL register can f
reeze the value of performance counter right after the PMI
happens, preventing the interrupt handling process distur

bs the value of the counter.
All registers mentioned above should be set up in the

VM-Entry and VM-Exit fields of VMCS, and then the
VMCS will save and restore the values of the registers
automatically during the transition between the guest and
the host.

C. Mechanism of Time Location Matching
In order to inject the event into the guest deterministi-

cally, we need to stop the guest at the right time location
and return the control to KVM module.

We design an algorithm to match the time location, so
some assumptions should be made first: A is the current
event, B is the next event, so B.BC is the value of branch-
es retired of B, B.RIP and B.RCX present the values of
RIP and RCX registers.

First, we get the distance from A to B, �AB=BCA-BCB.
Because the executions are completely the same during
the logging process and the replay process, after execut-
ing �AB branches, the execution should arrive at event B,
and then we use hardware breakpoint to match RIP value
and RCX match is achieved by single step.

BC Matching. We can’t know exactly the value of
performance counter on the side of host when the guest
operating system is running, so we use overflow mecha-
����� �� ����� ��� ������� ���� ��� ����������� ������� ��
LAPIC interrupt for performance counter overflow (NMI).
The performance counter is 40-unsigned integer, and its
maximum value max-pmc can be described as 40 bits of 1.
When the max-pmc is increased by 1, the performance
counter will overflow. As such, if we set performance

counter as max-pmc-�AB +1, the overflow will happen
after �AB branches. Because of the features of KVM, this
NMI will lead to a crash of the host operating system, in
order to prevent this happening and we don’t need a real
interrupt handler but just a detector of the overflow at the
same time, notification chain is the best choice.

Notification chain. It provides a way to get warnings
when some events we are interested in happen, which is
different from hard coding. The notification chain has
registered some important notifiers in kernel, including
die notification chain, network device notification chain
and so on.

Die notification Chain. We use the die notification
chain in this paper to detect the overflow of performance
counter. When a kernel panic happens, devices can get the
information and handle it, we can change our device sta-
tus or shut it down instead of shutting down the operating
system. In order to use the chain, we need to register an
event handler, which parses the information about the
running state, does processing and tells the next operation
needed. Figure 8 shows the procedure.

RIP matching. The mechanism used to match EIP is
hardware breakpoint. The P6 architecture supports four
hardware-assisted breakpoints for debugging purposes
which can be set up to trigger on reads or writes from any
address. The guest’s use of these breakpoints is not al-
lowed during logging and replay process. Hardware
breakpoint in our system only involves several registers:
Dr0 ~ Dr3 and Dr7. After the matching of BC, we set
the linear address of RIP to one of the debug address
registers DRx and configure necessary bits in register DR7.
After the configuration, he guest is allowed to run normal-
ly until the debug exception is trapped. Before modifying
the value of DRx, we need to save the original value and
restore it after the match of EIP to ensure the normal run
of the guest.

RCX Matching. If the value of the RCX register is not
already the value of RCX in the triple, it must be set as
RCX =RCX –RCXn (RCXn means the value of RCX in the
triple) and the guest should be set to run in single step
mode, then the guest continues to run until the right num-
ber of iterations is executed. At this point, time location
match is over and event injection can be done. After the
injection, the value of register RCX should be restored
with RCX in the triple, in this way, the remaining repeat
iterations will continue when the guest resumes.

Fig. 7. The procedure of die notification chain

446446446

D. Replaying Non-deterministic Events
The event injection is done when the appropriate time

location reaches, its main flow is as follows: data in the
log file are sent into the kernel and the guest is monitored.
When the time location reaches, KVM injects the event
according to the event type. Timer interrupts can be re-
played in the kernel, but the I/O events should be replayed
with the help of QEMU. The control flow of replay is
shown in Figure 9.

First of all, replay command is sent via console of
QEMU and a checkpoint is restored, then KVM module
masks all interrupts. Second, Notification chain is enabled
in CPU. Then the time location match begins, and events
are replayed at the right time. For timer interrupt, we need
to write its interrupt number into
VM_ENTRY_INTR_INFO_FIELD, while for I/O events,
KVM return control to QEMU, where the event is re-
played.

Fig. 8. Control flow of the replay process

V. EVALUATION

A. Configuration of the Experiment Platform
The experiment computer is a 2.8 GHz Intel i7 proces-

sor with 4 GB of memory, which runs a uniprocessor
guest virtual machine with 128 MB of memory. Both the
host computer and the guest OS are install a version of
Debian Squeeze with Linux 2.6.32 kernel.

B. Overhead Evaluation of Logging
In KVM, VM-Exit will bring in performance loss,

but LoRe makes RDTSC trapped for deterministic replay,
so we need to measure how much the performance loss is.

Logging Overhead of RDTSC. We run a program
which invokes RDTSC for 100000 times iteratively, and
then record the time cycles and real time in every cycle.
The result is shown in Table 1. We can observe that emu-
lating the execution of RDTSC has a high performance
loss but logging overhead is relatively low, which is only
���!�������"���#���$�

Table 1. logging Overhead of RDTSC
Type Time cycles Time'!�*

no trap 93 0.033
trap without log 9586 3.424

trap with log 10082 3.601

Logging Interrupts Evaluation. Logging interrupts
is similar to RDTSC, we logged 5000 time interrupts and
recorded the time overhead of logging. The result is
shown in Figure 10. From the figure, we can conclude
that logging interrupts takes about 318 time cycles
(114!�), which is similar to the RDTSC experiment.

Fig. 9. Overhead of logging interrupts
Logging Performance Evaluation. We use wget,

kernel compile [13] and LU in SPLASH-2 [14]
to show the comprehensive performance of logging. As
the results shown in Figure 11, the performance loss is
acceptable.

Fig. 10. Normalized execution time

Performance Comparison. To compare the overhead
of logging of LoRe with current works, we have done
some experiments based on kernel compile to show the
performance of LoRe, ReVirt and EcecRecorder. Figure
12 is the results and the results show that the performance
loss of LoRe is relatively lower than others.

Fig. 11. Horizontal comparison of logging performance

C. Log Growth Evaluation
The size of log file increases with logging time. Every

log entry is about 40 bytes uncompressed, and we record
the size of log file after gzip compression in idle, iSCP
and kernel compile cases. The result is as follows:

The log growth has relationship with the kind of
workload. In idle state, the log growth is the slowest,
246.8KB/m; in kernel compile, the log growth is faster,

447447447

611.4KB/m; in iSCP, the log growth is the fastest,
6.61MB/m, 9.3G/day, the log growth is acceptable con-
sidering the high capacity of current storage.

Table 2. Data size in three benchmarks
Benchmark/ Time 0 1 2 3 4 5

Idle (KB) 0.02 3.76 7.41 12.17 16.31 20.59
iSCP (KB) 0.02 113.3 225.9 338.5 450.6 564.3

kernel compile (KB) 0.02 10.05 19.87 30.15 41.53 50.97

Fig. 12. Data growth of LoRe

D. Overhead of Replay
The overhead of replay depends on two factors: (1).

At least two more VM-Exit to match time location. (2).
No need for idle time which reduce the time overhead.

This experiment repeats those benchmarks mentioned
in Section 5.2 and compares the result with normal and
logging cases. The result is shown in Figure 14.

Fig. 13. Normalized execution time

According to the figure above, the performance of re-
play is better than that of logging when transferring files,
about 7.2% performance loss; in the kernel compile
benchmark, the performance of replay is worse than that
of logging, about 3.9% performance loss; in the LU
benchmark, the performance of replay is almost equal to
that of logging, about 1.01% performance loss.

To compare the replay performance loss of LoRe with
ReVirt and CASMotion [19], we recorded the replay time
of kernel compile experiment and normalized the time by
the logging time. Figure 15 shows the results. From the
figure, the replay performance loss of LoRe is smaller
than the others’, showing that the notification chain
mechanism improves the replay performance.

Fig. 14. Horizontal comparison of replay performance

Overall, logging and replay system based on KVM has
low performance overhead and acceptable storage space.

VI. CONCLUSION

This paper analyzes the problems of service security
and continuity in cloud computing platform, and compares
implementation, performance loss and integrity of differ-
ent logging and replay systems based on different virtual-
ization platforms, then presents a new system level logging
and replay system based on KVM: LoRe. Aiming at func-
tional, performance, security and data size requests, LoRe
carries out a Virtual Machine Control Structure (VMCS)
based logging and replay mechanism for non-deterministic
events. Meanwhile, it employs the notification chain of
Linux kernel to improve the performance of replay process,
it also designs an input/output control (IOCTL) based
secured data transmission mechanism and an efficient and
reusable circular buffer queue model. Experimental results
show that LoRe achieves a lower performance loss and
requires a smaller storage space.

Our future work focuses on how to replay multi-core
virtual machines and how to introduce logging and replay
technique into live migration and high availability of vir-
tual machines, which will provide wider application fields
for logging and replay technique.

ACKNOWLEDGE

We thank the anonymous reviewers for their valuable
comments and help in improving this paper. This work is
supported by the National Grand Fundamental Research
973 Program of China under Grant No. 2011CB302602,
National Nature Science Foundation of China under Grant
No. 61272165 and No. 91118008, National High Technol-
ogy Research 863 Program of China under Grant No.
2011AA01A202, and New Century Excellent Talents in
University 2010 Beijing New-Star R&D Program under
Grant No. 2010B010, and SKLSDE-2012ZX-21.

REFERENCES

[1] Fox A, Griffith R, Joseph A, et al. Above the clouds: A Berkeley
view of cloud computing[J]. Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS,
2009, 28.

[2] Cornelis F, Georges A, Christiaens M, et al. A taxonomy of
execution replay systems[C]. Proceedings of International
Conference on Advances in Infrastructure for Electronic Business,
Education, Science, Medicine, and Mobile Technologies on the
Internet. 2003.

[3] Kivity A, Kamay Y, Laor D, et al. kvm: the Linux virtual machine
monitor[C]. Proceedings of the Linux Symposium. 2007, 1: 225-
230.

[4] Dunlap G W, Lucchetti D G, Fetterman M A, et al. Execution
replay of multiprocessor virtual machines[C]. Proceedings of the
fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments. ACM, 2008: 121-130.

[5] Sheldon M X V M J, Weissman G V B. Retrace: Collecting
execution trace with virtual machine deterministic replay[C].
Proceedings of the Third Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS 2007). 2007.

[6] de Oliveira D A S, Crandall J R, Wassermann G, et al.
ExecRecorder: VM-based full-system replay for attack analysis
and system recovery[C]. Proceedings of the 1st workshop on
Architectural and system support for improving software
dependability. ACM, 2006: 66-71.

448448448

[7] Kiefer K E, Moser L E. Replay debugging of non deterministic
executions in the Kernel based Virtual Machine[J]. Software:
Practice and Experience, 2011.

[8] Li J, Li B, Wo T, et al. CyberGuarder: A virtualization security
assurance architecture for green cloud computing[J]. Future
Generation Computer Systems, 2012, 28(2): 379-390.

[9] Dunlap G W, King S T, Cinar S, et al. ReVirt: Enabling intrusion
analysis through virtual-machine logging and replay[J]. ACM
SIGOPS Operating Systems Review, 2002, 36(SI): 211-224.

[10] Liu H, Jin H, Liao X, et al. Live migration of virtual machine
based on full system trace and replay[C]. Proceedings of the 18th
ACM international symposium on High performance distributed
computing. ACM, 2009: 101-110.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Vol. 1–5. Intel Corporation: Santa Clara, CA,
December 2009. Intel Publication.

[12] Venkateswaran S. Essential Linux device drivers[M]. Prentice Hall
Press, 2008.

[13] Deshane T, Shepherd Z, Matthews J, et al. Quantitative
comparison of Xen and KVM[J]. Xen Summit, Boston, MA, USA,
2008: 1-2.

[14] Woo S C, Ohara M, Torrie E, et al. The SPLASH-2 programs:
Characterization and methodological considerations[C]. ACM
SIGARCH Computer Architecture News. ACM, 1995, 23(2): 24-
36.

[15] Intel Open Source Technology Center. System Virtualization:
principles and implemetation[M]. Tsinghua University Press. 2009.

[16] Kei Ohmura NTT Cyber Space Labs. Rapid VM Synchronization
with I/O Emulation Logging-Replay. http://www.linux-
kvm.org/page/KVM_Forum_2011.

[17] Ta-Shma P, Laden G, Ben-Yehuda M, et al. Virtual machine time
travel using continuous data protection and checkpointing[J]. ACM
SIGOPS Operating Systems Review, 2008, 42(1): 127-134.

[18] Vallee G, Naughton T, Ong H, et al. Checkpoint/restart of virtual
machines based on Xen[C]. Proceedings of the High Availability
and Performace Computing Workshop (HAPCW 2006), Santa Fe,
New Mexico, USA. 2006.

[19] Bressoud T C, Schneider F B. Hypervisor-based fault tolerance[J].
ACM SIGOPS Operating Systems Review, 1995, 29(5): 1-11.

[20] Lei Cui, Jianxin Li, Bo Li, Jinpeng Huai, Chunming Hu, Tianyu
Wo, Hussain Al-Aqrabi, Lu Liu: VMScatter: migrate virtual
machines to many hosts. VEE 2013: 63-72

449449449

