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Abstract—Computing shortest distances is one of the funda-
mental problems on graphs, and remains achallenging task
today. Distance landmarks have been recently studied for shortest
distance queries with an auxiliary data structure, referred to
as landmark covers. This paper studies how to apply distance
landmarks for fast exact shortest distance query answering on
large road graphs. However, thedirect application of distance
landmarks is impractical due to the high space and time cost. To
rectify this problem, we investigate novel techniques thatcan be
seamlessly combined with distance landmarks. We first propose a
notion of hybrid landmark covers, a revision of landmark covers.
Second, we propose a notion ofagents, each of which represents
a small subgraph and holds good properties for fast distance
query answering. We also show that agents can be computed in
linear time. Third, we introduce graph partitions to deal with the
remaining subgraph that cannot be captured by agents. Fourth,
we develop a unified framework that seamlessly integrates our
proposed techniques and existing optimization techniques, for
fast shortest distance query answering. Finally, we experimentally
verify that our techniques significantly improve the efficiency of
shortest distance queries, using real-life road graphs.

I. I NTRODUCTION

We study thenode-to-node shortest distanceproblem on
large graphs: given a weighted undirected graphG(V,E) with
non-negative edge weights and two nodes ofG, the source
s and the targett, find the shortest distance froms to t
in G. We allow the usage of auxiliary structures generated
by preprocessing, but restrict them to have a moderate size
(compared with the input graph). In this work, we are only
interested inexactshortest distances onlarge graphs.

Finding shortest distances, a twin problem offinding short-
est paths, is one of the fundamental problems on graphs, and
has found its usage as a building block in various applications,
e.g.,measuring the closeness of nodes in social networks and
Web graphs [18], [24], [28], and finding the distances between
physical locations in road networks [34].

Algorithms for shortest distances have been studied since
1950’s and still remain anactivearea of research. The classical
one is Dijkstra’s algorithm [6] due to Edsger Dijkstra. Dijk-
stra’s original algorithm runs inO(n2) [7], and the enhanced
implementation with Fibonacci heaps runs inO(n log n+m)
due to Fredman & Tarjan [10], wheren and m denote the
numbers of nodes and edges in a graph, respectively. The latter
remains asymptotically the fastest known solution on arbitrary
undirected graphs with non-negative edge weights [30].

However, computing shortest distances remains a challeng-
ing problem, in terms of both time and space cost, for large-
scale graphs such as Web graphs, social networks and road
networks. The Dijkstra’s algorithm [10] is not acceptable on

large graphs (e.g.,with tens of millions of nodes and edges)
for online applications [24]. Therefore, a lot of optimization
techniques have been recently developed to speed up the
computation [5], [13], [20], [24], [25], [27], [28], [33], [34].

Distance landmarks(a.k.a. distance oracles, see Section
II-B for details) are data structures that support efficientshort-
est distance query answering, and have been recently studied
in both theory [23], [30] and practice [24], [26], [28]. Ann×n
triangular matrix of sizen2/2 for all-pair shortest distances
can be computed inO(n2 logn+ mn) time, using Dijkstra’s
algorithm [10], wheren andm are the numbers of nodes and
edges, respectively. With the distance matrix, shortest distance
queries can be answered inO(1) time. This solution, however,
is not practicalon large graphs: the preprocessing time is too
long, and even if one is willing to wait that long, the matrix is
too large to be stored effectively. For instance, the matrixof a
graph with one million nodes needs about1, 862 GB memory
(here the distance entries are stored as4-byte integers).

Distance landmarks aim atstriking a balancebetween the
efficiency benefits of answering shortest distance queries and
the time and space cost of computing and storing them. And
distance landmarks have already been adopted for answering
approximateshortest distances [24], [26], [28], [30], and for
answeringexact shortest distances on directed graphs [14],
[23]. However, how to apply distance landmarks for answering
exact shortest distances on undirected graphs is mainly limited
to pure theoretical analyses [30].

Contributions & Roadmap . To our knowledge, we are among
the first to study the application of distance landmarks for fast
exact shortest distance queries on large undirected graphs.

(1) We develop an approximation algorithm with a constant
factor 2 to analyze distance landmarks by establishing con-
nections with vertex covers (Section III), based on which
we show that thedirect application of distance landmarks is
not practical for large-scale graphs. We then proposehybrid
landmark covers, a revised notion of traditional landmark
covers, to reduce the space cost (Section III).

(2) We propose a notion ofagentssuch that each agent rep-
resents a small subgraph, referred to asdeterministic routing
areas(DRAs) (Section IV). Then landmarks are only built for
agents, instead of the entire graph. Hence, both space and
time cost are reduced. We give an analysis of agents and
DRAs, based on which we develop a linear time algorithm for
computingDRAs along with their maximal agents. As shown
in the experimental study, on average about 1/3 nodes of a
graph are captured by agents and theirDRAs.
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(3) We introduce thebounded graph partitioningproblem
(BGP) to deal with the remaining subgraph that cannot be
captured by theDRAs of agents, and show that the problem is
NP-complete (Section V). We then propose a notion ofSUPER

graphs that combine graph partitions with hybrid landmark
covers to support efficient shortest distance answering. Wealso
build connections between the traditional graph partitioning
problem and theBGP problem, and utilize the traditional graph
partitioning approaches,e.g.,METIS, to solve the problem. As
shown by the experiments, METIS works well.
(4) We propose a unified frameworkDISLAND for fast shortest
distance query answering (Section VI), which seamlessly
combines distance landmarks with agents, graphs partitions
(SUPERgraphs), and existing speed-up techniques [32], [34].
(5) Using real-life large road graphs, we conduct an extensive
experimental study (Section VII). We find that ourDISLAND

scales well with large graphs,e.g.,it takes0.28×10−3 seconds
on graphs with2.4 × 107 nodes and5.7 × 107 edges.
Moreover,DISLAND is 9.4, 134.9, and14, 540.1 times faster
thanCH [13], ARCFLAG [22], and bidirectional Dijkstra [20],
respectively. Moreover, the auxiliary structures occupy only a
moderate size of space (about1/2 of the input graphs), and
can be pre-computed efficiently.

Due to the space constraint, we defer all the proofs to [11].

Related work. (1) Algorithms for node-to-node shortest dis-
tances have been extensively studied since 1950’s, and fallinto
different categories in terms of different criteria:

• exact distances [4], [5], [7], [10], [13], [14], [20], [23],
[23], [25], [27], [29], [32], [34] and approximate dis-
tances [24], [26], [28], [30];

• memory-based [7], [10], [13], [20], [23]–[30], [32]–[34]
and disk-based algorithms [4], [5];

• for unweighted [24], [28], [33] and weighted graphs [4],
[5], [7], [10], [13], [14], [20], [23], [23], [25]–[27], [29],
[30], [32], [34]; and

• for directed [14], [23], [29] and undirected graphs [4],
[5], [7], [10], [13], [20], [23]–[28], [30], [32]–[34].

In this work, we study the memory-based exact shortest
distance problem on weighted undirected large real-world
graphs. None of the previous work hasexperimentallystudied
how to apply distance landmarks for solving this problem.
(2) Distance landmarks have been recently investigated forap-
proximateshortest distance queries [24], [26], [28], [30], and
for answeringexactshortest distances on directed graphs [14],
[23]. However, how to apply distance landmarks for answering
exact shortest distances on undirected graphs is mainly limited
to pure theoretical analyses [30]. Nevertheless, in this work,
we investigate how to utilize distance landmarks to speed-up
shortest distance queries on real-life large road graphs.
(3) There has recently been extensive work on speed-up tech-
niques for shortest distance queries: bidirectional search [20],
hierarchical approaches [13], node and edge labeling [22],[27]
and shortcuts [25] (see [32], [34] for two recent surveys).
These techniques are complementary to our work, and can be
incorporated into our approach. We have indeed seamlessly

integrated theCH [13] and ARCFLAG [22] techniques with
distance landmarks into our framework.
(4) Graph partitioning has been extensively studied since
1970’s [16], [17], [35], and has been used in various applica-
tions,e.g.,circuit placement, parallel computing and scientific
simulation [35]. The graph partitioning problem considered
in this work differs from the traditional one that it concerns
more on the number of nodes with edges across different
partitions, instead of the number of edges with endpoints
across different partitions. Nevertheless, we build connections
between these two problems, and make use of the existing
approaches,e.g.,METIS [16], to solve the graph partitioning
problem considered in this work. It is also worth mentioning
that graph partitioning has already been used to speed-up
Dijkstra’s algorithm [22].
(5) Agents and deterministic routing areas proposed in this
study (Section IV) are significantly different (from definitions
to analyses to algorithms) from the 1-dominator sets proposed
in [29]. Moreover, the latter are for shortest path queries on
nearly acyclic directed graphs, which is not appropriate for
real-life large graphs, as these graphs typically contain alarge
strongly connected components [2].

II. PRELIMINARY

In this section, we first present basic notations of graphs.
We then introduce the notion of distance landmarks.

A. Graph Notions

We first introduce graphs and the related concepts.

Graphs. A weighted undirected graph(or simply agraph) is
defined asG(V , E, w), where (1)V is a finite set of nodes;
(2) E ⊆ V × V is a finite set of edges, in which(u, v) or
(v, u) ∈ E denotes an undirected edge between nodesu and
v; and (3)w is a total weight function that maps each edge
in E to a positive rational number.

We simply denoteG(V , E, w) asG(V,E) when it is clear
from the context.

Subgraphs. GraphH(Vs, Es, ws) is asubgraphof graphG(V ,
E,w) if (1) for each nodeu ∈ Vs, u ∈ V , and, moreover, (2)
for each edgee ∈ Es, e ∈ E andws(e) = w(e). That is,H
contains a subset of nodes and a subset of edges ofG.

We also denote subgraphH asG[Vs] if Es is exactly the
set of edges appearing inG overVs.

Paths and cycles. A simple path(or simply a path) ρ is a
sequence of nodesv1/ . . . /vn with no repeated nodes, and,
moreover, for eachi ∈ [1, n− 1], (vi, vi+1) is an edge inG.

A simple cycle(or simply acycle) ρ is a sequence of nodes
v1/ . . . /vn with v1 = vn and no other repeated nodes, and,
moreover, for eachi ∈ [1, n− 1], (vi, vi+1) is an edge inG.

The length of a path or cycleρ is the sum of the weights
of its constituent edges,i.e.,

∑n−1
i=1 w(vi, vi+1).

We say thatvi+1 (resp.vi) is a neighborof vi (resp.vi+1).
We also say that a node isreachableto another one if there

exists a path between these two nodes.
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Shortest paths and distances. A shortest pathfrom one node
u to another nodev is a path whose length is minimum among
all the paths fromu to v.

The shortest distancebetween nodesu and v, denoted by
dist(u, v), is the length of a shortest path fromu to v.

Connected components. A connected component(or simply
a CC) of a graph is a subgraph in which any two nodes
are connected by a path, and is connected to no additional
nodes. A graph is connected if it has exactly one connected
component, consisting of the entire graph.

Cut-nodes and bi-connected components. A cut-node of a
graph is a node whose removal increases the number of
connected components in the graph.

A bi-connected component(or simply aBCC) of a graph is
a subgraph consisting of a maximal set of edges such that any
two edges in the set must lie on a common simple cycle.

B. Distance Landmarks

We next introduce the notion of distance landmarks [24].
Consider an ordered set ofl verticesD = < x1, . . . , xl >

such that for eachi ∈ [1, l], xi is a distinct node in graphG.
We say thatD is a landmark coverof graphG if and only

if for any node pair(u, v) in G with u reachable tov, there
exists alandmarkxi (1 ≤ i ≤ l) in D such that the shortest
distancedist(u, v) = dist(u, xi)+ dist(xi, v). This is achieved
by representing each node inG as a vector of shortest distances
to the set of landmarks inD. More specifically, each node
u ∈ V is represented as anl-dimensional vectordistVec(u):

distVec(u) = < dist(x1, u), . . . , dist(xl, u) >.
The LMC problem is to find a landmark cover with a

minimum number of landmarks in a graph. The problem is
unfortunately intractable, as shown below.

Proposition 1: The LMC problem isNP-complete [24]. ✷

To reduce its computational complexity, anO(log n)-
approximation algorithm was proposed by using the approx-
imation algorithms for theset cover(SC) problem [24]. This
algorithm, however, runs in cubic time, and cannot be directly
used for large graphs, as already been observed in [24].

Remarks. (1) With a landmark coverD, the exact shortest
distancedist(u, v) for any node pair(u, v) can be computed in
O(|D|) time, where|D| is the number of landmarks inD. This
is obvious asdist(u, v) = min{dist(u, xi) + dist(xi, v) | xi ∈
D}. (2) As a landmark coverD occupies|D| (|V |−1) space,
its size|D| must be small in order to apply it on large graphs.

III. D ISTANCE LANDMARKS REVISITED

In this section, we first show that it is not practical todirectly
utilize landmark covers due to the high space cost. We then
propose a notion ofhybrid landmark coversto alleviate this
problem. Here we consider a graphG(V,E,w).

A. Landmark Covers

To give a more accurate estimation of landmark covers, we
develop an approximation algorithm with a constant factor2.
Recall that theSC based algorithm (Section II-B, [24]) has an

Input: A weighted undirected graphG(V,E,w).
Output: A landmark coverD of G.
1. Remove redundant edges fromG;
2. Compute a vertex coverD of G;
3. return D.

Figure 1. 2-approximation algorithm for computing landmark covers

approximation factor ofO(log n). To do this, we first present
a notion of redundant-edge-free (REF) graphs. We then build
the relationship between theLMC problem and the clasical
vectex cover(VC) problem onREF graphs, which leads to a
2-approximation algorithm. Finally, we evaluate the cost of
landmark covers with the approximation algorithm.

A vertex coverof a graph is a set of nodes such that each
edge of the graph is incident to at least one node of the set.
The VC problem is to find a minimum set of vertex covers, a
classical optimization problem known to beNP-complete [12].

Graphs often contain redundant edges when distance queries
are concerned. GraphG is redundant-edge-free(REF) if it con-
tains noredundantedges, where an edge(u, v) is redundant if
its removal has no effects on the shortest distancedist(u, v).

By the definition ofREF graphs above, it is trivial to see
that REF graphs preserve shortest distances, and that a graph
may have multipleREF graphs. We next build the relationship
between landmark covers and vertex covers, stated as follows.

Theorem 2: For any REF graph G, a setS of nodes is a
landmark cover ofG iff S is a vertex cover ofG. ✷

As a consequence, theLMC problem is identical to theVC

problem onREF graphs.

Approximation algorithm. It is well-known that theVC prob-
lem has a 2-approximation algorithm [31], which basically
computes amaximal matchingof a graph by greedily picking
edges and removing all endpoints of the picked edges [6].
Following from Theorem 2, we obtain a2-approximation
algorithm for theLMC problem, presented in Fig. 1.

Given a graphG(V,E), the algorithm first computes an
REF graph ofG by removing redundant edges (line 1). It then
computes a vertex coverD of the REF graph (line 2), and
simply returnsD as a landmark cover ofG (line 3).

Note that testing whether an edge(u, v) is redundant
in a graphG(V,E,w) is typically efficient. When comput-
ing dist(u, v) using Dijkstra’s algorithm on graphG(V,E \
{(u, v)}, w), if dist(u, v′) > w(u, v) for any nodev′ before
reachingv, it is easy to verify that(u, v) is not a redundant
edge. Moreover, for a large portion of edges(u, v), its weight
w(u, v) is exactly the shortest distancedist(u, v) in real-life
graphs such as road networks. Hence, ourVC based algorithm
is typically much faster than theSC based algorithm [24],
though they have the same time complexity.

Remarks. The 2-approximation algorithm allows us to have
both lower and upper bounds for the sizes and space cost of
landmark covers. If the algorithm returns a landmark coverD,
then the lower and upper bounds for the size of theoptimal
landmark coverare |D|/2 and |D|, respectively.

Findings on landmark covers. We next experimentally test
the overhead of landmark covers with our approximation algo-
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Table I
OVERHEAD OF LANDMARK COVERS VS. ORIGINAL GRAPHS

GraphsG(V,E) Landmark coversD
name size (MB) ≤ |D| ≤ ≤ |D|

|V |
≤ (%) ≤ size≤ (GB) ≤ size(D)

size(G)
≤ time (s)

CO 9.62 [181,276, 362,552] [41.6, 83.2] [588.42, 1,176.83] [6.27 × 104, 1.25 × 105] 34.1
FL 24.59 [447,486, 894,972] [41.8, 83.6] [3,568.67, 7,137.33] [1.49 × 105, 2.97 × 105] 391.8
CA 42.54 [761,662, 1,523,324] [40.3, 80.6] [10,730.05, 21,460.09] [2.58 × 105, 5.17 × 105] 1,205.6

E-US 80.17 [1,450,115, 2,900,230] [40.3, 80.6] [38,880.24, 77,760.48] [4.97 × 105, 9.93 × 105] 4,315.3
W-US 139.24 [2,545,995, 5,091,990] [40.7, 81.3] [118,786.74, 237,573.47] [8.74 × 105, 1.75 × 106] 12,984.3
C-US 312.10 [5,811,428, 1,1622,856] [41.3, 82.5] [609,721.69, 1,219,443.38] [2.00 × 106, 4.00 × 106] 66,996.9
US 531.63 [9,737,381, 19,474,762] [40.7, 81.3] [1,737,359.48, 3,474,718.95] [3.35 × 106, 6.69 × 106] 196,194.6

rithm. We tested seven real-life datasets from [8] (please refer
to Section VII for details about the datasets and experimental
settings). We adopted the adjacency-list representation [6] for
graphs when counting their space cost, and assumed that nodes
and distances were stored as4-byte integers.

The experimental results shown in Table 1 tell us that:
(1) The size of an optimal landmark cover is large, and
typically 40%–80% of the nodes in a graph are landmarks.
(2) The space cost of a landmark cover is huge, and is typically
more than104–106 times of the graph itself. For instance, the
landmark cover of the US graph with1/2 GB space may incur
a space cost of more than1.74× 106 GB.
(3) Computing landmark covers of large graphs is inefficient.
It took our algorithm more than 2 days 6 hours on the US
dataset. It is worth mentioning that here we only compute
the landmarks nodes, not including computing the shortest
distances between graph nodes and landmarks. Furthermore,
the directly usage ofSC based algorithm [24] is even worse,
due to its high space and time cost (it even runs out of memory
–16GB– for the smallest CO dataset on our testing machine).

Hence, it suffices to conclude that the direct application of
distance landmarks as [24] is impractical for large graphs.

B. Hybrid Landmark Covers

The naive matrix approach stores the pre-computed all-pair
shortest distances of a graphG(V,E), and takes|V |(|V |−1)/2
space. And the landmark approach was proposed to reduce the
space cost to|V ||D|, where|D| is the size of a landmark cover.
One might believe that the landmark approach always incurs
less space than the matrix approach. It is, however, not the
case as shown by the following example.

Example 1: Consider nodex in a landmark coverD that lies
on the shortest paths of a set{(u1, u2), . . ., (u2k−1, u2k)} of
k node pairs in a graph, where nodesui 6= uj for any i 6= j
∈ [1, 2k]. Then nodex takesk space in the naive approach,
by directly adding edges to connect thosek node pairs, while
it takes2k space in the landmark approach, by adding edges
betweenx and each of the2k nodes. ✷

This motivates us to propose ahybrid approach combining
the naive approach with the landmark one. To do this, we first
define the following notions.

Consider a nodex in a graphG. Let Px be a set of node
pairs such thatx lies on their shortest paths, and letNx be
the set of distinct nodes inPx. For a landmark nodex, we
only store the shortest distances betweenx and the node in
Nx, instead of all the nodes in the graph as [24]. Hence, the

space cost of makingx a landmark, denoted byspaceL(x), is
exactly |Nx|. Alternatively, the naive approach incurs a space
cost of |Px|, denoted byspaceN(x), by storing the shortest
distances for each node pair inPx.

Consider an ordered set ofl verticesD = < x1, . . . , xl >
such that (a) for eachi ∈ [1, l], xi is a node in graphG, and
(b) Pxi

∩ Pxj
= ∅ for any i 6= j ∈ [1, l].

Hybrid landmark covers. We say that̃D = (D,E−
D) is ahybrid

landmark coverof graphG if and only if:
(1) for eachxi (i ∈ [1, l]), spaceL(xi) ≤ spaceN(xi),
(2) there exist no other nodesx in G, but x 6∈ D, such that
spaceL(x) ≤ spaceN(x), and
(3) E−

D is a set edges, denoting all the node pairs ofG such
that no landmarks inD lie on their shortest paths.

We also callED̃ = {(u, x) | u ∈ Nx, x ∈ D} ∪E−
D the set

of edgesenforcedby a hybrid landmark cover̃D.

Remark. (1) Essentially,D consists of a maximal set of
landmarks such that the space cost of each landmark in the
set is not larger than the corresponding naive cost.
(2) A hybrid landmark cover̃D of a graph can be treated as
another graph with the same set of nodes, but with a different
set of edges,i.e., the setED̃ of enforced edges. Similarly, the
naive approach transforms a graph into a complete graph. This
provides a unified view for these two approaches.
(3) Computing hybrid landmark covers on large graphs re-
mains very challenging. Indeed, they cannot be directly used in
practice as well. As will be seen in Section V, we build hybrid
landmark coversw.r.t. a (small) subset of nodes in graphG. In
the following, we will explore techniques to support efficient
shortest distance queries on large real-life road graphs.

IV. U SING REPRESENTATIVES FORLANDMARKS

As illustrated and analyzed in Section III, the direct appli-
cation of distance landmarks is not practical for large graphs.
A straightforward approach is to userepresentatives, each
of which captures a set of nodes in a graph. The distance
landmarks are for the representatives only, instead of the entire
graph, which reduces both space and time cost.

The task to find a proper form of representatives is, however,
nontrivial. Intuitively, we expect representatives to have the
following properties. (1) A small number of representatives
can represent a large number of nodes in a graph; (2) Shortest
distances involved within the set of nodes being represented
by the same representative can be answered efficiently; And,
moreover, (3) the representatives and the set of nodes being
represented can be computed efficiently.
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Figure 2. Using agents for landmarksFigure 3. Example agents andDRAs

In this section, we first proposeagentsand deterministic
routing areas(DRAs) to capture representatives and the set of
nodes being represented, respectively. We then give an analysis
of the properties ofDRAs and their agents, and show that they
are indeed what we want. Finally, we present a linear-time
algorithm for computing agents and theirDRAs. The idea of
using agents andDRAs is illustrated in Fig. 2.

We consider a graphG(V,E,w).

A. Agents and Deterministic Routing Areas

We first present agents and theirDRAs.

Agents. Given a nodeu in graphG(V,E), we say thatu is an
agentof a set of nodes, denoted byAu, if and only if:
(1) nodeu ∈ Au is reachable to any node ofAu in G,
(2) all neighbors of any nodev ∈ Au \ {u} are inAu, and
(3) the size|Au| of Au is equal or less thanc · ⌊

√

|V |⌋,
wherec is a small constant number, such as2 or 3.

Here condition (1) guarantees the connectivity of subgraph
G[Au], condition (2) implies that not all neighbors of agent
u are necessarily inAu; and condition (3), referred to assize
restriction, limits the size ofAu of agentu.

Note that a nodeu may be an agent of multiple sets of nodes
A1

u, . . . , A
k
u such thatAi

u ∩ Aj
u = {u} for any i 6= j ∈ [1, k].

And we denote asA+
u the union of all the sets of nodes whose

agent isu , i.e., A+
u = A1

u ∪ . . .∪ Ak
u.

Maximal agents. We say that an agentu is maximal if there
exist no other agentsu′ such thatA+

u ⊂ A+
u′ .

Trivial agents. We say that a maximal agentu is trivial if A+
u

contains itself only,i.e., A+
u = {u}.

Equivalent agents. We say that two agentsu and u′ are
equivalent, denoted byu ≡ u′, if A+

u = A+
u′ .

Deterministic routing areas (DRAs). We refer to thesubgraph
G[A+

u ] with nodesA+
u as aDRA of agentu.

Intuitively, DRA G[A+
u ] is a maximalconnected subgraph

connecting to the rest of graphG through agentu only.
We next illustrate these notions with an example below.

Example 2: First consider graphG1(V1, E1) in Fig. 3, and
let c · ⌊

√

|V1|⌋ = 2 · ⌊
√

|16⌋ = 8, wherec = 2 and |V1| = 16.
(1) Nodeu is an agent, and itsDRA is the subgraph in the left
hand side of the vertical line acrossu;
(2) Nodev is an agent, and itsDRA is the subgraph in the left
hand side of the vertical line acrossv;
(3) Nodew is not an agent since it can not find aDRA with
size less or equal than8;

(4) Nodev is a maximal agent, while nodeu is not a maximal
agent sinceA+

u ⊂ A+
v .

We then consider graphG2(V2, E2) in Fig. 3, and letc ·
⌊
√

|V2|⌋ = 2 · ⌊
√

5|⌋ = 4, wherec = 2 and |V2| = 5.
(1) Nodesu, v andw are three maximal agents, whoseDRAs
are all the entire graphG2, and, hence,
(2) u, v andw are three equivalent agents. ✷

Remarks. (1) As illustrated by the above examples, aDRA

of graphG(V,E) may have a size larger thanc · ⌊
√

|V |⌋,
and multiple equivalent agents. (2) Trivial agents can only
represent themselves. Hence, we are only interested in non-
trivial agents (or simply called agents) in the sequel.

B. Properties of Agents and DRAs

We next give an analysis of agents andDRAs, and show that
they hold good properties for shortest distance queries.

Proposition 3: Any agent in a graph has a uniqueDRA. ✷

This shows that agents andDRAs are well defined notions.

Proposition 4: Without the size restriction, any nodeu in
graph G is a maximal agent, and itsDRA G[A+

u ] is exactly
the connected component (CC) to whichu belongs. ✷

This justifies the necessity of the size restriction for agents.
Otherwise,DRAs are simplyCCs, and are mostly useless.

Proposition 5: For any two nodesv, v′ in the DRA G[A+
u ] of

agentu in graphG,
(1) the shortest distancedist(v, v′) in DRA G[A+

u ] is exactly
the one in the entire graphG; and
(2) it can be computed in linear time in the size ofG. ✷

The size restriction guarantees that the shortest distance
computation within aDRA can be evaluated efficiently.

Proposition 6: Given a nodev in the DRA G[A+
u ] of agentu

in graphG, and another nodev′ in G, but not inG[A+
u ], the

shortest distancedist(v, v′) = dist(v, u) + dist(u, v′). ✷

Propositions 5 and 6 together guarantee that the shortest
distances between the nodes in theDRAs of two distinct agents
can be answered correctly and efficiently.

Proposition 7: Any agent in aCC H(Vs, Es) of graphG(V ,
E) with |Vs| > c · ⌊

√

|V |⌋ must be a cut-node of graphG. ✷

This motivates us to identify maximal agents by utilizing
the cut-nodes andBCCs, which will be seen immediately.

Proposition 8: Any node in a bi-connected component (BCC)
with size larger thanc · ⌊

√

|V |⌋ of graphG(V , E) is a trivial
agent. ✷

As we are interested in non-trivial agents only, those large
BCCs could be simply ignored with any side effects.

Theorem 9: Given any two agentsu and u′,
(1) if u ∈ A+

u′ , thenA+
u ⊆ A+

u′ ;
(2) if u′ ∈ A+

u , thenA+
u′ ⊆ A+

u ; and
(3) A+

u ∩ A+
u′ = ∅, otherwise. ✷
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Figure 4. Cut-nodes and bi-connected components

Figure 5. BC-SKETCH graphG3 of graphG3

Corollary 10: Given any two maximal agentsu and u′, then
eitherA+

u = A+
u′ or A+

u ∩A+
u′ = ∅ holds. ✷

This says when maximal agents are concerned, there exists
a unique set of non-overlappingDRAs.

C. Computing DRAs and Maximal Agents

In this section, we first present a notion ofBC-SKETCH

graphs, based on which we then propose an algorithm for
computingDRAs and their maximal agents.

The main result here is stated as follows.

Theorem 11: Finding all DRAs, each associated with one
maximal agent, in a graph can be done in linear time. ✷

We shall prove this by providing a linear time algorithm
that computesDRAs and maximal agents. We first presentBC-
SKETCH graphs, a key notion employed by the algorithm.

A BC-SKETCH graph G(V,E, ω) of a graphG(V,E) is a
bipartite graph, in which (1)V = Vc ∪ Vbc such thatVc is
the set of cut-nodes inG, andVbc is the set ofBCCs in G;
(2) for each cut-nodev ∈ Vc and eachBCC yb ∈ Vbc, there
exists an edge(v, yb) ∈ E iff v is a cut-node ofBCC yb; and
(3) ω is a weight function such that for each nodeyb ∈ Vbc,
ω(yb) is the number of nodes ofG in BCC yb.

Example 3: Consider graphG3 in Fig. 4(1), in which labeled
nodesu, v, w, x, y are the cut-nodes ofG3, and the corre-
spondingBCCs of G3 are BC1, BC2, BC3, BC4, BC5, and
BC6, and are shown in Fig. 4(2).

The BC-SKETCH graphG3(V,E, ω) of graphG3 is shown
in Fig. 5, in whichω(BC1) = 4,ω(BC2) = ω(BC3) = ω(BC4)
= ω(BC6) = 2, andω(BC5) = 5. ✷

One may notice that there are no cycles in theBC-SKETCH

graphG3. This is not a coincidence, as shown below.

Proposition 12: BC-SKETCH graphs have no cycles, which
implies that they are simply trees. ✷

Proposition 12 indicates that we can employ the good
properties of trees for computingDRAs and maximal agents.

We are now ready to present algorithmcompDRAs shown
in Fig. 6. It takes as input graphG and constantc, and outputs
the DRAs of G, each associated with a maximal agent.

Input: GraphG(V,E) and constantc.
Output: The DRAs associated with their maximal agents.
1. Find all cut-nodesVc and BCC nodesVbc of G;
2. Build the BC-SKETCH graphG(V,E, ω) with V = Vc ∪ Vbc;
3. Identify and return theDRAs and their maximal agents ofG.
Procedure extractDRAs

Input: BC-SKETCH graphG(V,E, ω) of graphG and constantc.
Output: The DRAs and their maximal agents ofG.
1. let F be the set of cut-nodes with leaf neighbors inG;

/* note that a leaf node must be aBCC node */
2. while F is not emptydo
3. pick a cut-nodev from F ; let X be the neighbors ofv;

/* note that there is at most one non-leaf node inX */
4. let α :=

∑

y′∈X
ω(y′) - |X| + 1;

5. if α ≤ c · ⌊
√

|V |⌋ then
6. merge allBCC nodes inX andv into oneBCC nodeyn;
7. let ω(yn) := α;
8. if there is a non-leaf node inX then replace it withyn;
9. F := F \ {v};
10. let F ′ be the set of new cut-nodes with leaf neighbors;
11. for each cut-nodev in F ′ do
12. let X ′ be a set of leaf neighbors ofv′ such that
13. for eachy′ ∈ X ′, ω(y′) ≤ c · ⌊

√

|V |⌋;
14. markX ′ as theDRA A+

v′ of agentv′;
15. return all DRAs with their maximal agents.

Figure 6. ComputingDRAs and maximal agents

(1) Finding cut-nodes andBCCs. The algorithm starts with
computing all cut-nodes and bi-connected components (line1),
by using the linear-time algorithm developed by John Hopcroft
and Robert Tarjan [6], [15].

(2) ConstructingBC-SKETCH graphs. After all the cut-nodes
and BCCs are identified, theBC-SKETCH graphG(V,E, ω)
can be easily built (line 2). To see this can be done in linear
time, the key observation is that the number|E| of edges in
G is exactly|V| − 1 sinceG is a tree.

(3) IdentifyingDRAs and their maximal agents. Finally, the
algorithm identifies and returns theDRAs and their maximal
agents (line 3), using ProcedureextractDRAs in Fig. 6.

ProcedureextractDRAs takes as input theBC-SKETCH graph
G of graphG and constantc, and outputs theDRAs and their
maximal agents, by repeatedly mergingBCCs with size less
than c · ⌊

√

|V |⌋. More specifically, the procedure starts with
the setF of cut-nodes with leaf neighbors (line 1). It then
recursively merges the neighboringBCC nodes of cut-nodes to
generate newBCC nodes (lines 2-9). For a nodev ∈ F with
neighborsX , if

∑

y′∈X ω(y′) - |X | + 1 ≤ c·⌊
√

|V |⌋, they can
be merged into a newBCC node (lines 3-8). Intuitively, this
says cut-nodev is not a maximal agent, and it is combined
into the DRAs of maximal agents. A key observation here is
that there is at most one non-leaf node inX . If there is such a
non-leaf neighbor, then it is replaced by the newBCC nodeyn
(line 8), by which the merging processing is made possible.
Once a cut-node is considered, it is never considered again
(line 9). After no merging can be made, we have found all
maximal agents,i.e., all the cut-nodes in the updatedBC-
SKETCH graph. We then identifyDRAs for these maximal
agents (lines 10-14). For any leaf neighbory′ of a cut-nodev′,
if ω(y′) ≤ c · ⌊

√

|V |⌋, theny′ is anAv′ of agentv′. All these
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together constitute theA+
v′ of agentv′ (lines 12-14). Finally,

all DRAs with their maximal agents are returned (line 15).
We now explain the algorithm with an example as follows.

Example 4: Consider graphG3 in Fig. 4(1) again. Here we
let c = 2, andc · ⌊

√

|V |⌋ = 6. Firstly, cut-nodes andBCCs are
computed as shown in Fig. 4(2). Secondly, theBC-SKETCH

graphG3 of G3 is constructed as shown in Fig. 5. After the
merging step stops, the updatedBC-SKETCH graph consists
of threeBCC nodes:BC′

1 = {BC1, BC2, BC3}, BC4, BC′
2 =

{BC5, BC6} and two cut-nodes:w andx. Finally, theDRAs
and their maximal agents are identified: agentw with DRA

BC′
1 and agentx with DRA BC′

2. ✷

Correctness & Complexity. The correctness of algorithm
compDRAs can be readily verified based on the analyses
in Section IV-B. To show that algorithmcompDRAs runs in
linear time, it suffices to show that procedureextractDRAs
can be done in linear time. It is easy to see that each node in
the BC-SKETCH graph is visited at most twice in procedure
extractDRAs, and hence the procedure runs in linear time.

This completes the proof of Theorem 11.

Summary. (1) We have proposed a notion of agents andDRAs
aiming at reducing the size of graphs such that landmarks are
only for agents, instead of the entire graph. (2) We have given
a theoretical analysis of agents andDRAs, based on which we
have developed a linear time algorithm for computingDRAs
and their maximal agents. (3) As shown in our experimental
study, on average about 1/3 nodes of a graph are captured by
non-trivial agents and theirDRAs.

V. I NTRODUCING GRAPH PARTITIONS FORLANDMARKS

Web graphs contain a large strongly connected compo-
nents [2], and, similarly, there is usually a largeBCC in real-life
graphs such as the collaboration and social networks [9], [19].
As pointed out in Section IV, for theBCCs in a graphG(V,E)
with a size larger than⌊

√

|V |⌋, each node in thoseBCCs is
a trivial agent that can only represent itself. This motivates
us to introduce the graph partitioning techniques for distance
landmarks, based on which we use a small set of nodes, instead
of a single agent node, to represent a large set of nodes.

In this section, we first introduce graph partitions. We then
propose a notion ofSUPER graphs which combine graph
partitions with hybrid landmark covers. We finally present the
bounded graph partition problem and its solution.

We consider a graphG(V,E).

A. Graph Partitions and Super Graphs

We first introduce graph partitions andSUPERgraphs.

Graph partitions. We say that(V1, . . . , Vk) is a partition of
graphG(V,E) if and only if (1)

⋃k
i=1 Vi = V , and (2) for

any i 6= j ∈ [1, k], Vi ∩ Vj = ∅, in which we refer to aVi

(i ∈ [1, k]) as afragmentof the partition.
We also say that nodeu in Vi (1 ≤ i ≤ k) is a boundary

node if there exists an edge(u, v) in G from nodesu to v
such thatv ∈ Vj andj 6= i (1 ≤ j ≤ k).

SUPERgraphs. We next introduceSUPERgraphs that combine
graph partitions with hybrid landmark covers.

Consider a partition(V1, . . . , Vk) of graph G. For each
fragmentVi (i ∈ [1, k]), let (1) Bi be the set of boundary
nodes ofVi, and (2)D̃i = (Di, E

−
Di

) be a hybrid landmark
cover for the setBi of boundarynodes ofVi.

The SUPER graph of graph partition(V1, . . . , Vk) is a
weighted undirected graphG(V , E ,Υ) such that:
(1) V = B1 ∪ . . . ∪Bk ∪D1 ∪ . . . ∪Dk, i.e., the union of all
boundary nodes and distance landmarks on each fragment;
(2) E = EB ∪ED̃1

∪ . . . ∪ED̃k
, whereEB ⊆ E is the set of

edges with both endpoints belonging toB1∪ . . .∪Bk, and for
eachi ∈ [1, k], ED̃i

is the set of edges enforced by the hybrid
landmark coverD̃i; and
(3) For each edge(u, v) ∈ EB , Υ(u, v) is exactly equal to the
edge weightw(u, v) in graphG, and for each edge(u, v) ∈
ED̃i

(i ∈ [1, k]), Υ(u, v) is the local shortest distance between
u andv in the fragmentVi only.

That is, aSUPER graphG of graphG(V,E) only consists
of the landmarks and boundary nodes. Hence, the size ofG
is typically much smaller than graphG. Intuitively, SUPER

graphs use a small set of nodes in a fragment,i.e.,the boundary
nodes and distance landmarks, to represent a large number of
nodes,i.e., all the nodes in the fragment.

B. Bounded Graph Decompositions

As the landmarks are for the boundary nodes, the number
of boundary nodes has a key impact on the size ofSUPER

graphs. In addition, the size of a fragment should be bounded
in order to efficiently compute its hybrid landmark cover.

This motivates us to study the following problem.

The bounded graph partitioning problemis to find a partition
(V1, . . . , Vk) of graphG(V,E) , denoted byBGP, such that (1)
|Vi| ≤ Γ for each fragmentVi (i ∈ [1, k]), and (2)|B| ≤ ǫ·|V |,
whereΓ ≤ |V | is a positive integer,ǫ ∈ [0.0, 1.0] is a rational
number, and|B| is the total number of boundary nodes.

The problem is, however, nontrivial, as expected.

Proposition 13: The BGP problem isNP-complete. ✷

Traditional graph partitioning is to find a partition(V1,
. . ., Vk) of a graph such that (1) thek fragments have a
roughly equal number of nodes, and (2) the number of edges
connecting nodes in different fragments is minimized. The
problem has been extensively studied since 1970’s [16], [17],
[35], and has been used in various applications,e.g., circuit
placement, parallel computing and scientific simulation [35].

Large-scale graph partitioning tools are available such asthe
best-known METIS [16]. Hence, this study is not to propose
a new graph partitioning algorithm. Instead, it builds rela-
tionships between theBGP problem and the traditional graph
partitioning problem, and makes use of existing approaches
for solving theBGP problem.

Key observations. For any partition(V1, . . ., Vk), the setB of
boundary nodes with edges across different fragments and the
setEB of all edges connecting nodes in different fragments
satisfy: |B| ≤ 2|EB|.
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This is, minimizing |EB| essentially reduces the upper
bound of |B|. Moreover, those edges inEB are part of the
SUPER graph. Hence, minimizing|EB | also reduces the size
of the SUPER graph. This observation inspires us to adopt
existing approaches,e.g.,METIS [16], to partition graphs and
generateSUPERgraphs. As will be seen in in our experiments,
smallerSUPERgraphs help answer shortest distance queries.

Summary. (1) We have introduced a notion ofSUPERgraphs
that combine graph partitions with distance landmarks. (2)We
have proposed theBGP problem, and shown it isNP-complete.
(3) We have also built connections between theBGP problem
and the traditional graph partitioning problem, which makes
it possible to use the existing approaches,e.g., METIS [16],
to solve our problem. As will be seen in our experiments,
METIS works well for the BGP problem, and the produced
SUPERgraphs are typical small, which only have 2–4% nodes
and 10–15% edges compared with the original graphs.

VI. A U NIFIED FRAMEWORK FORANSWERINGSHORTEST

DISTANCE QUERIES

In this section, we propose a unified framework, referred
to as DISLAND, for fast shortest distance query answering,
which consists of two modules:preprocessing and query
answering. We combine distance landmarks with agents and
graph partitions (SUPER graphs), and seamlessly integrate
existing speed-up techniques [13], [22] into the framework.

Consider a graphG(V,E) with non-negative edge weights.

A. Preprocessing for Query Answering

We first present the preprocessing module.
Given graphG(V,E), the module seamlessly combines

agents and graph partitions with hybrid landmark covers, and
it produces (a) maximal agents along with theirDRAs, (b)
graph partitions, and (c) aSUPERgraphG(V , E).

More specifically, given graphG(V,E), the module exe-
cutes the following processes:
(1) It first computes theDRAs and their maximal agents, using
algorithmcompDRAs proposed in Section IV-C.
(2) For eachDRA with a non-trivial maximal agentu, it further
(a) computes all the shortest distancesdist(u, v) for all nodes
v in its DRA, and (b) adds an edge(u, v) with weightdist(u, v)
for each nodev in the DRA.
(3) It then generates ashrink graph, the subgraphG[A] of G
in which A is the set of agent nodes, including both trivial
and non-trivial agents. For eachDRA with a maximal agentu,
only u is kept inG[A].
(4) It next calls METIS [16] to produce a graph partition
(V1, . . . , Vk) for the shrink graphG[A] such that for each
i ∈ [1, k], |Vi| is roughly equal toc · ⌊

√

|V |⌋. Here c is a
small constant number, such as2 or 3.
(5) For each fragmentVi (i ∈ [1, k]), it computes a (local)
hybrid landmark coverD̃i for the boundary nodesof Vi only,
by calling theSC based algorithm (Section II-B, [24]). Note
that here we did not use theVC based algorithm, which was
proposed for estimating of the size of landmark covers only.

Figure 7. The preprocessing module

(6) Finally, it builds aSUPERgraphG(V , E ,Υ) of graphG.
The entire process is illustrated in Fig. 7.

B. A Bi-level Query Answering Approach

We next present the query answering module.
Given a source nodes and a target nodet, this module

finds the shortest distance froms to t, by making use of the
auxiliary structures produced by the preprocessing module.

More specifically, given nodess andt, the query answering
module executes the following processes:
(1) When nodess andt belong to the sameDRA G[A+

u ] with
agentu such thatA+

u = A1
u ∪ . . . Ah

u.
If s and t further fall into the sameAi

u, then it invokes
Dijkstra’s algorithm on the subgraphG[Ai

u]. Otherwise, it
simply returnsw(s, u) + w(u, t) in constant time.
(2) When s and t belong to twoDRAs G[A+

us
] and G[A+

ut
]

with agentsus andut, respectively. Asdist(s, t) = dist(s, us)
+ dist(us, ut) + dist(ut, t), in whichdist(s, us) anddist(ut, t)
are already known, we only need to computedist(us, ut).

Let Vs andVt be the fragments to which agentsus andut

belong, respectively. As observed in [4], fragmentsVs andVt

and theSUPERgraph together suffice to answer exact shortest
distance queries. Hence, the algorithm invokes the Dijkstra’s
algorithm on the union of subgraphsG[Vs], G[Vt] and the
SUPERgraphG(V , E ,Υ) to computedist(us, ut).

Following the analysis above, we have the following.

Proposition 14: Framework DISLAND correctly answers
shortest distance queries. ✷

C. Optimization Techniques

There exist quite a few speed-up techniques for shortest
distance computations [32], [34].DISLAND is very flexi-
ble such that most of these techniques, if not all, can be
seamlessly incorporated to further speed-up shortest distance
query answering. In this study we have adopted bidirectional
search [20], contraction hierarchies (CH) [13], and Arc-Flags
(ARCFLAG) [22] due to their effectiveness and generality.

We first introduce the three optimization techniques.
(1) Bidirectional search(BSEARCH, [20]) simultaneously per-
forms two searches: forward and backward, starting at the
source and target nodes, respectively [20], [32]. It invokes two
instances of the Dijkstra’s algorithm simultaneously, andhas
the same time complexity as the (single directional) Dijkstra’s
algorithm. However, BSEARCH is usually more efficient than
the Dijkstra’s algorithm in practice.
(2) Contraction hierarchies(CH, [13]) first imposes a total
order O on the nodes of a graph, in ascending order of
their relative ‘importance’, and then constructs ahierarchyby
contracting all the nodes in this order. A nodev is contracted
by removing it from the graph such that shortest paths in the
remaining graph are preserved, achieved by replacing paths
of the formu/v/w by a shortcutedge(u,w). Note that the
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shortcut(u,w) is only required ifu/v/w is theonly shortest
path fromu to w. After all the nodes are contracted, all the
shortcuts are appended into the graph.

CH uses BSEARCH with minor revisions for query answer-
ing. Give two nodesu andw with O(u) < O(w), CH only
visits two kinds of pathsu/ · · · /vi/ · · · /w in the process: (a)
O(u) < · · · < O(w) or (b) there is a uniquevi with O(u) <
· · · < O(vi) andO(vi) ¿ · · · > O(w). In this way,CH avoids
visiting the nodes with an order lower thanu andw in the
forward and backward searches, respectively, which makes it
much more efficient than BSEARCH alone in practice.

(3) Arc-Flags (ARCFLAG, [22]) is a partition-based edge la-
beling approach, and it divides a graphG(V,E) into partitions
(V1, . . . , Vk) and gathers information for each edgee ∈ E and
for each fragmentVi (i ∈ [1, k]) on whether the edgee lies
on a shortest path into the fragmentVi. To do this, each edge
e is associated with a flag vectorfe with k bits (the number
of fragments) such that the vectorfe contains a flag 1 or 0
for Vi indicating whether or note is useful for a shortest path
query to nodes inVi. It is easy to verify thatARCFLAG incurs
k|E| bits of extra space.

We next show how to seamlessly incorporate these three
optimization techniques into our frameworkDISLAND.
(1) The shrink graphG[A] of graph G is appended with
shortcuts, by using theCH approach.
(2) We build a hybrid landmark cover for each fragment, by
incorporating theCH searching process.

We only consider the shortest pathsρ = u/ · · · /vi/ · · · /w
such that (a)O(u) < · · · < O(w), in which caseρ is
called order rising, or (b) O(u) ¡ · · · < O(vi) and O(vi)
¿ · · · > O(w), in which caseρ is called order turning.
When computing landmarks for a fragment, we cover a node
pair (u, v) only if (1) there exists an order rising or turning
path betweenu and v, and (2) their (local) shortest distance
in the fragment is equal to their (global) shortest distance
in the entire shrink graph. Moreover, (a) for these node
pairs (u,w) connected by order turning paths, we select the
nodes with highest orderas landmarks; and (b) for these
remaining node pairs(u,w) connected by order rising paths,
we use the cost model to greedily select landmarks or build
direct edges, following the hybrid landmark approach. As the
searching space is reduced, this both improves the efficiency of
computing hybrid landmark covers, and, of course, the query
answering. Moreover, we adopt the query answering approach
for CH [13], instead of the bidirectional Dijkstra’s algorithm,
in the query answering module ofDISLAND.
(3) We compute edge labeling, by using theARCFLAG ap-
proach. To do this, we further call METIS to do a second level
partition of theSUPERgraph, where each fragment is treated
as a single node, and the edge weight between fragments are
the number of edges connecting them. When building Arc-
Flags, we again incorporateCH, by considering order rising
or turning shortest paths only, to speed-up the processing.

Extra space analysis. This module produces two kinds of
auxiliary structures: the non-trivial maximal agents along with

Table II
REAL-WORLD GRAPHS

Name Regions # of Nodes # of Edges

CO Colorado 435,666 1,042,400
FL Florida 1,070,376 2,687,902
CA California & Nevada 1,890,815 4,630,444

E-US Eastern US 3,598,623 8,708,058
W-US Western US 6,262,104 1,5119,284
C-US Central US 14,081,816 33,866,826
US Entire US 23,947,347 57,708,624

their DRAs and theSUPERgraphG(V , E ,Υ).
(1) Let U = {u1, . . . , uh} be the set of non-trivial maximal
agents identified. The extra space ofU and theirDRAs is the
extra edges from those agents to the set of nodes in theirDRAs,
which is exactly equal to

∑h
i=1 |A

+
ui
| - h.

(2) Each fragment in the partition(V1, . . . , Vk) roughly has
the same size ofc · ⌊

√

|V |⌋. We setc = 2 or 3 in practice.
Hence, the number of fragments is less than⌊

√

|V |⌋.
For each fragmentVi (i ∈ [1, k]), letED̃i

be the set of edges
enforced by the hybrid landmark cover̃Di for the boundary
nodes ofVi. Hence, the number of extra edges in theSUPER

graphG is bounded by
∑k

i=1 |ED̃i
|.

(3) The remaining extra space is incurred by the shortcuts
added byCH and the Arc-Flags added byARCFLAG.

As will be shown in our experiments, all these auxiliary
structures only incur a small space cost, and the entire prepro-
cessing can be finished in a reasonably fast way.

VII. E XPERIMENTAL STUDY

We next present an extensive experimental study of theDIS-
LAND framework for shortest distance query answering. Using
real-life road networks, we conducted five sets of experiments
to evaluate: (1) the impacts of agents, graph partitions, and
hybrid landmark covers; (2) the preprocessing time and space
overhead of bidirectional Dijkstra [20],CH [13], ARCFLAG

[22], their counterparts using agents (Agent + Dijkstra, Agent
+ CH, Agent +ARCFLAG), andDISLAND; and (3) the perfor-
mance of all these approaches.

A. Experimental Settings

We first introduce the settings of our experimental study.

Real-life graphs. We chose seven datasets of various sizes
from the Ninth DIMACS Implementation Challenge [8],
shown in Table 2. Each dataset is an undirected graph that
represents a part of the road network in the United States (US),
where each edge weight is the distance (integers) required to
travel between the two endpoints of the edge.

Distance queries. We adopted the query generator in [34]. Our
distance queries were generated as following. On each road
network, we generated eight setsQ1, Q2, . . . , Q8 of queries.
(1) We first imposed a256 × 256 grid on the road network
and computed the side lengthℓ of each grid cell. (2) We then
randomly chose ten thousand node pairs from the road network
to composeQi(i ∈ [1, 8]), such that the grid distance of all
node pairs inQi is in [2i−1 ·ℓ, 2i·ℓ). Note that the grid distance
of two nodesu, v in a query set is the distance of the cells into
which u andv fall, respectively. Moreover, the grid distance
of any node pair inQi is larger than the grid distance of all
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Table III
EFFECTIVENESS OF AGENTS AND DRAS

Graphs Agents (#, %) Nodes (#, %) inDRAs time (s)

CO (56,277, 12.9%) (156,329, 35.9%) 1.1
FL (140,379, 13.1%) (378,937, 35.4%) 3.7
CA (273,191, 14.4%) (623,811, 33.0%) 11.3

E-US (546,481, 15.2%) (1,228,876, 34.1%) 34.3
W-US (869,904, 13.9%) (2,116,339, 33.8%) 100.4
C-US (2,034,358, 14.4%) (4,583,413, 32.5%) 402.4
US (3,452,222, 14.4%) (7,927,453, 33.1%) 1153.7

Table IV
EFFECTIVENESS OF GRAPH PARTITIONS

Shrink fragments avg # of avg (#, %) of
graphs (#) nodes boundary nodes time (s)

CO 220 1,269.7 (76.1, 5.99%) 1.1
FL 340 2,033.6 (92.5, 4.55%) 3.1
CA 470 2,695.8 (114.9, 4.26%) 6.6

E-US 630 3,761.5 (156.4, 4.16%) 13.8
W-US 840 4,935.4 (151.9, 3.08%) 26.2
C-US 1,280 7,420.6 (241.4, 3.25%) 85.5
US 1,650 9,709.0 (260.2, 2.68%) 126.7

node pairs inQi−1. For each query setQi (i ∈ [1, 8]), we
report the average running time of over all the ten thousand
queries in the set.

Algorithms. We adopted the latest version5.0.2 of METIS

[21], implemented with ANSI C. We also re-implemented the
original CH [3] from its inventors of using Microsoft Visual
C++. Bidirectional Dijkstra,ARCFLAG and their counterparts
using agents were also written in Microsoft Visual C++. All
these algorithms used common data structures and procedures,
borrowed fromCH [3], for similar tasks.

All experiments were run on a PC with an Intel Core i5-
2400 CPU@3.10GHz and 16GB of memory. Each test was
repeated over 5 times, and the average is reported here. We
compare algorithms running on general commercial PCs with
a 16GB memory limitation, and hence, algorithms using larger
memory,e.g.,[1], are not in our consideration.

B. Experimental Results

We next present our findings. In all experiments, we tested
the datasets in Table 2, and fixed the constantc = 2 when
computing agents and graph partitions on graphsG(V,E).

Exp-1: Impacts of agents. In the first set of experiments, we
evaluated (1) the number of non-trivial agents, (2) the number
and percentage of the nodes represented by the agents (exclud-
ing the agents themselves fromDRAs), and (3) the efficiency
of our algorithmcompDRAs for computing agents and their
DRAs. The results are reported in Table 3.

There are around1/7 nodes are non-trivial agents, and about
1/3 nodes are captured by agents in these graphs, which means
basically the shrink graph is only about2/3 of the input graph.
Moreover, although the size restriction is≤ 2 · ⌊

√

|V |⌋, DRAs
are typically small in these graphs, and each agent represents
2 or 3 other nodes on average. AlgorithmcompDRAs also
scales well, and it can be done in less than half an hour for
the largest graph in the preprocessing.

As will be seen in the following experiments, this makes
agents a light-weight optimization techniques, which benefits
most, if not all, existing shortest distance algorithms.

Table V
EFFECTIVENESS OF HYBRID LANDMARK COVERS

Graph With cost model Without cost model
fragments |D̃| |ED̃| time(s) |D| |ED | time(s)

CO 32.1 537.8 0.1 49.8 549.4 0.1
FL 39.5 689.3 0.2 61.7 705.7 0.2
CA 51.3 1,021.9 0.4 78.4 1,045.1 0.4

E-US 71.1 1617.1 0.9 107.0 1651.8 0.8
W-US 68.9 1,541.6 0.9 104.6 1,576.8 0.9
C-US 116.4 3,251.3 4.0 169.4 3,329.8 3.9
US 124.9 3,584.3 4.9 183.1 3,673.4 4.8

Table VI
SIZES OF SUPER GRAPHS

G CO FL CA E-US W-US C-US US
|Vc|/|V | 3.9% 3.0% 2.9% 2.8% 2.1% 2.3% 1.8%
|Ec|/|E| 14.5% 10.9% 12.7% 14.2% 10.3% 14.5% 12.0%
|V|/|V | 3.9% 3.0% 2.9% 2.8% 2.1% 2.3% 1.8%
|E|/|E| 14.8% 11.1% 13.0% 14.5% 10.5% 14.5% 12.3%

Exp-2: Impacts of graph partitions. In the second set of ex-
periments, we justified that theBGP problem could be solved
well by METIS, originally for traditional graph partitioning
problems. Using the shrink graphs generated at Exp-1, we
evaluated the effectiveness and efficiency of METIS. To ensure
the query efficiency ofDISLAND, each fragment has at most
c · ⌊

√

|V |⌋ number of nodes. We used the multilevel bisection
method of METIS with the balance factor fixed to 1.003. The
results are reported in Table 4.

The results tell us that there are only about (up to) 6%
of nodes are boundary nodes, and the largest graph can be
finished in 127 seconds. This clearly justified our analysis and
choice to attack theBGP problem by using existing approaches
to traditional graph partitioning problems.

Exp-3: Impacts of hybrid landmark covers. In the third set of
experiments, using the graph fragments generated at Exp-2,we
evaluated (1) the average number of nodes and edges enforced
by the hybrid landmarks covers with or without the cost model,
and (2) their average efficiency on a single fragment. The
results are reported in Table 5.

The results tell us that the usage of the cost model both re-
duces the number of landmarks and enforced edges, moreover,
it only incurs little extra time cost.

We also report theSUPER graphs in Table 6. TheSUPER

graphsG are quite small, typically have 2–4% nodes and
10–15% edges compared with the original graphsG(V,E).
Using hybrid landmark covers with the cost model, theSUPER

graphsG(Vc, Ec) further reduce 0.2–0.3% edges. This justified
the effectiveness of agents and graph partitions, and the
introduction of the cost model for hybrid landmark covers.

Exp-4: Preprocessing time and space overhead. In the fourth
set of experiments, we tested the space cost and preprocessing
time of Dijkstra, Agent + Dijkstra,CH, Agents + CH, AR-
CFLAG, Agents +ARCFLAG, and DISLAND. For DISLAND,
we did a second level partition on theSUPER graphs intok
fragments, determined as follows:k = ⌊ m

1000⌋ · 100 if m ¿
1000, andk = ⌊ m

100⌋ · 10, otherwise, wherem is the number
of fragments of the shrink graphs, shown in Table 4.ARCFLAG

called METIS to partition the graphs intok fragments as well.
The results are reported in Figure 8.

The results tell us that (1) the space cost follows the order:
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Figure 8. Space overhead and preprocessing time
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Figure 9. Performance evaluationw.r.t. graph sizes
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Figure 10. Performance evaluationw.r.t. distance queries

ARCFLAG > Agents + ARCFLAG > DISLAND > Agents
+ CH > Agent + Dijkstra > Dijkstra > CH; and (2) the
preprocessing time follows the order:ARCFLAG > Agents
+ ARCFLAG > DISLAND > Agents + CH > CH > Agent
+ Dijkstra. In particular,CH even uses less space than the
original graphs, andDISLAND uses about1/2 time extra
space, while Agent +ARCFLAG and ARCFLAG use1.66 and
1.24 times extra space, respectively. WhileCH and DISLAND

could finish the preprocessing in less than0.5 and11 hours,
repectively, it took Agent +ARCFLAG and ARCFLAG 26 and
40 hours, respectively. Thus all approaches, exceptARCFLAG

and Agents +ARCFLAG, produce auxiliary structures with a
small space cost and in a reasonably fast way.

Exp-5: Efficiency of shortest distance queries. In the last set
of experiments, using the8 sets Q1, . . . , Q8 of distance
queries, we tested the efficiency of Dijkstra, Agent + Di-
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jkstra, CH, Agents + CH, ARCFLAG, Agents + ARCFLAG,
andDISLAND on the7 datasets with corresponding generated
auxiliary structures. The results are reported in Figures 9
and 10. As for all algorithms, their counterparts with agents
were always faster, we omitted their running time for clarity.

The results tell us that (1) all algorithms scale wellw.r.t.
the graph sizes andw.r.t. the distance queries, and (2) the
efficiency of the algorithms follows the order:DISLAND,
Agent + CH > Agent + ARCFLAG > Agent + Dijkstra. For
the distance queries (Q1, . . . , Q4) with relative close distance
node pairs, the running time ofDISLAND and Agent +CH is
comparable. However, for the distance queries (Q5, . . . , Q8)
with relative long distance node pairs,DISLAND is apparently
faster than Agent +CH. Indeed, forQ8 on the US dataset,
DISLAND is 14, 540.1, 9, 430.2, 134.9, 116.5 , 9.4 and 9.1
times faster than Dijkstra, Agent + Dijkstra,ARCFLAG, Agent
+ ARCFLAG, CH, and Agent +CH, respectively.
Summary. From these experimental results, we find the fol-
lowing. (1) DISLAND scales well on large road graphs,e.g.,
it takes only0.28× 10−3 seconds on graphs with2.4 × 107

nodes and5.7 × 107 edges. (2) Agents and theirDRAs are
a light-weight preprocessing technique, which benefits almost
all shortest distance algorithms. (3) Agents, graph partitions
and hybrid landmark covers together provide a good solution
to produce smallSUPER graphs, which typically have 2–4%
nodes and 10–15% edges compared with the original graphs.
(4) DISLAND produces auxiliary structures with a small space
cost (about1/2 of the input graphs), and their preprocessing
could be finished in a reasonably fast way. (5)DISLAND

provides a good solution for shortest distance query answering,
especially for far node pairs on large graphs. ForQ8 on the
US dataset, it is even9.1 times faster than Agent +CH,
whereCH is the best approach without using extra information,
e.g., longitude and latitude, tested in [34]. Finally, (6) hybrid
landmark covers play a central role that makes our proposed
techniques (e.g.,agents and graph partitions) and the existing
techniques (e.g.,CH and ARCFLAG) seamlessly integrate into
a unified framework –DISLAND.

VIII. C ONCLUSION

We have studied how to apply distance landmarks for fast
exact shortest distance query answering on large weighted
undirected road graphs. To our knowledge, we are among the
first to settle this problem. We have shown that the direct
application of distance landmarks is impractical due to their
high space and time cost. To rectify these problems, we have
proposed: hybrid landmark covers, agents andDRAs, bounded
graph partitions,SUPER graphs and frameworkDISLAND.
We have also verified, both analytically and experimentally,
that hybrid landmark covers, together with these techniques,
significantly improve efficiency of shortest distance queries.

Several topics are targeted for future work. We are to extend
our techniques for other types real-life datasets that could be
modeled as weighted undirected graphs,e.g.,social networks.
We are also to explore the possibility of applying distance
landmarks for other classes of graph queries,e.g.,reachability.
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